[1] 黄燕云,高洁,张利娜,等.利用全细胞膜片钳技术记录大鼠脑片NMDA电流的研究[J].中国应用生理学杂志,2021, 37(5):459-462.
[2] 于婷婷,丁懿宁,阎美卉,等.基于膜片钳技术的丹红注射液对人诱导多能干细胞衍生心肌细胞电生理的影响研究[J]. 药物评价研究,2024,47(5):1010-1016.
[3] BELL D C, FERMINI B. Use of automated patch clamp in cardiac safety assessment: past, present future perspectives. J Pharmacol Toxicol Methods. 2021;111: 107114.
[4] LOVISOLO D. Patch clamp: the first four decades of a technique that revolutionized electrophysiology and beyond. Rev Physiol Biochem Pharmacol. 2023;186:1-28.
[5] ROGERS M, OBERGRUSSBERGER A, KONDRATSKYI A, et al. Using automated patch clamp electrophysiology platforms in ion channel drug discovery: an industry perspective. Expert Opin Drug Discov. 2024; 19(5):523-535.
[6] MELGARI D, CALAMAIO S, FROSIO A, et al. Automated patch-clamp and induced pluripotent stem cell-derived cardiomyocytes: a synergistic approach in the study of brugada syndrome. Int J Mol Sci. 2023;24(7):6687.
[7] NOGUCHI A, IKEGAYA Y, MATSUMOTO N. In vivo whole-cell patch-clamp methods: recent technical progress and future perspectives. Sensors (Basel). 2021;21(4): 1448.
[8] HORVATH B, SZENTANDRASSY N, DIENES C, et al. Exploring the coordination of cardiac ion channels with action potential clamp technique. Front Physiol. 2022;13:864002.
[9] GAO J, LIAO C, LIU S, et al. Nanotechnology: new opportunities for the development of patch-clamps. J Nanobiotechnology. 2021;19(1):97.
[10] LINDERS LE, SUPIOT LF, DU W, et al. Studying synaptic connectivity and strength with optogenetics and patch-clamp electrophysiology. Int J Mol Sci. 2022; 23(19):11612.
[11] JIANG F, ZHANG F, SU Y, et al. Knowledge mapping of disease-modifying therapy (DMT) in multiple sclerosis (MS): a bibliometrics analysis. Heliyon. 2024;10(11): e31744.
[12] QU F, WANG G, WEN P, et al. Knowledge mapping of immunotherapy for breast cancer: a bibliometric analysis from 2013 to 2022. Hum Vaccin Immunother. 2024;20(1):2335728.
[13] ZHANG L, LI Y, ZHANG Y, et al. Development and trends in metabolomics studies in psoriasis: a bibliometric analysis of related research from 2011 to 2024. Heliyon. 2024; 10(8):e29794.
[14] ALMUHAIDIB S, ALQAHTANI R, ALOTAIBI HF, et al. Mapping the landscape of medical research in the Arab world countries: a comprehensive bibliometric analysis. Saudi Med J. 2024;45(4):387-396.
[15] CHEN L, CHEN J, WU M, et al. Analyzing the bibliometrics of brain-gut axis and Parkinson’s disease. Front Neurol. 2024; 15:1343303.
[16] LANG X, LI L, LI Y, et al. Effect of diabetes on wound healing: a bibliometrics and visual analysis. J Multidiscip Healthc. 2024; 17:1275-1289.
[17] 张子婷,郑彦宁,袁芳.多指标核心作者识别方法研究[J].现代情报,2020,40(7): 144-151.
[18] JIANG X, SHEN S, CADWELL CR, et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science. 2015;350(6264):aac9462.
[19] TALANTOVA M, SANZ-BLASCO S, ZHANG X, et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci India Sect B Biol Sci. 2013;110(27): E2518-E2527.
[20] POLACK P, FRIEDMAN J, GOLSHANI P. Cellular mechanisms of brain state-dependent gain modulation in visual cortex. Nat Neurosci. 2013;16(9):1331-1339.
[21] CORK SC, RICHARDS JE, HOLT MK, et al. Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab. 2015; 4(10):718-731.
[22] KO H, COSSELL L, BARAGLI C, et al. The emergence of functional microcircuits in visual cortex. Nature. 2013;496(7443):96-100.
[23] HAMILL OP, MARTY A, NEHER E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981;391(2):85-100.
[24] MARGRIE TW, BRECHT M, SAKMANN B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch. 2002;444(4):491-498.
[25] NELSON MT, QUAYLE JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995;268(4 Pt 1):C799-C822.
[26] MARKRAM H, TOLEDO-RODRIGUEZ M, WANG Y, et al. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci. 2004;5(10):793-807.
[27] MADISEN L, ZWINGMAN T A, SUNKIN S M, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13(1):133-140.
[28] ZHAO ML, LU ZJ, YANG L, et al. The cardiovascular system at high altitude: a bibliometric and visualization analysis. World J Cardiol. 2024;16(4):199-214.
[29] HUO Q, LUO X, XU Z, et al. Machine learning applied to epilepsy: bibliometric and visual analysis from 2004 to 2023. Front Neurol. 2024;15:1374443.
[30] XU D, WANG Y, WANG K, et al. A scientometrics analysis and visualization of depressive disorder. Curr Neuropharmacol. 2021;19(6):766-786.
[31] YAN W, ZHENG K, WENG L, et al. Bibliometric evaluation of 2000-2019 publications on functional near-infrared spectroscopy. Neuroimage. 2020;220:117121.
[32] KIM MC, NAM S, WANG F, et al. Mapping scientific landscapes in UMLS research: a scientometric review. J Am Med Inform Assoc. 2020;27(10):1612-1624.
[33] TAO C, ZHANG G, XIONG Y, et al. Functional dissection of synaptic circuits: in vivo patch-clamp recording in neuroscience. Front Neural Circuits. 2015;9:23.
[34] SUK HJ, BOYDEN ES, van WELIE I. Advances in the automation of whole-cell patch clamp technology. J Neurosci Methods. 2019;326: 108357.
[35] PARK S, KANG M, HEO R, et al. Inhibition of voltage-dependent K+ channels by antimuscarinic drug fesoterodine in coronary arterial smooth muscle cells. Korean J Physiol Pharmacol. 2022;26(5):397-404.
[36] SEO MS, AN JR, JUNG HS, et al. Suppression of voltage-gated K+ channels by darifenacin in coronary arterial smooth muscle cells. Eur J Pharmacol. 2021;891:173707.
[37] AN JR, JUNG HS, SEO MS, et al. The effects of tegaserod, a gastrokinetic agent, on voltage-gated K+ channels in rabbit coronary arterial smooth muscle cells. Clin Exp Pharmacol Physiol. 2021;48(5):748-756.
[38] AN JR, SEO MS, JUNG HS, et al. The inhibitory effect of ziprasidone on voltage-dependent K+ channels in coronary arterial smooth muscle cells. Biochem Biophys Res Commun. 2020;529(2):191-197.
[39] ZHANG M, QI J, HE Q, et al. Liquiritigenin protects against myocardial ischemic by inhibiting oxidative stress, apoptosis, and L-type Ca2+ channels. Phytother Res. 2022;36(9):3619-3631.
[40] LI J, YANG Y, WANG H, et al. Baicalein ameliorates myocardial ischemia through reduction of oxidative stress, inflammation and apoptosis via tlr4/myd88/mapks/NF-κB pathway and regulation of Ca2+ homeostasis by l-type Ca2+ channels. Front Pharmacol. 2022;13:842723.
[41] ZHAO Z, LIU M, ZHANG Y, et al. Cardioprotective effect of monoammonium glycyrrhizinate injection against myocardial ischemic injury in vivo and in vitro: involvement of inhibiting oxidative stress and regulating Ca2+ homeostasis by L-type calcium channels. Drug Des Devel Ther. 2020;14:331-346.
[42] WU D, YU N, GAO Y, et al. Targeting a vulnerable septum-hippocampus cholinergic circuit in a critical time window ameliorates tau-impaired memory consolidation. Mol Neurodegener. 2023;18(1):23.
[43] TIAN T, CAI Y, QIN X, et al. Forebrain E-I balance controlled in cognition through coordinated inhibition and inhibitory transcriptome mechanism. Front Cell Neurosci. 2023;17:1114037.
[44] ZHU J, CHEN C, LI Z, et al. Overexpression of Sirt6 ameliorates sleep deprivation induced-cognitive impairment by modulating glutamatergic neuron function. Neural Regen Res. 2023;18(11):2449-2458.
[45] PENG X, MAO Y, TAI Y, et al. Characterization of anxiety-like behaviors and neural circuitry following chronic moderate noise exposure in mice. Environ Health Perspect. 2023;131(10):107004.
[46] HUANG M, YANG Z, LI Y, et al. Dopamine D1/D5 receptor signaling is involved in arrhythmogenesis in the setting of takotsubo cardiomyopathy. Front Cardiovasc Med. 2021;8:777463.
[47] XU Q, HUANG X, MENG Z, et al. Antiarrhythmic effects of vernakalant in human-induced pluripotent stem cell-derived cardiomyocytes from a patient with short QT syndrome Type 1. J Cardiovasc Dev Dis. 2022;9(4):112.
[48] ZHONG R, ZHANG F, YANG Z, et al. Epigenetic mechanism of L-type calcium channel beta-subunit downregulation in short QT human induced pluripotent stem cell-derived cardiomyocytes with CACNB2 mutation. Europace. 2022;24(12):2028-2036.
[49] LIU P, YANG Y, ZHANG H, et al. The effect of TWIK-1 two pore potassium channels on cardiomyocytes in low extracellular potassium conditions. Front Biosci (Landmark Ed). 2023;28(3):51.
[50] NAGARAJA RY, STILES MA, SHERRY DM, et al. Synapse-specific defects in synaptic transmission in the cerebellum of W246G mutant ELOVL4 rats-a model of human SCA34. J Neurosci. 2023;43(33):5963-5974.
[51] CHEN YC, RINDNER DJ, FOWLER JP, et al. Extracellular ATP neurotransmission and nicotine sex-specifically modulate habenular neuronal activity in adolescence. J Neurosci. 2023;43(48):8259-8270.
[52] 韩昕,李莎莎,陈曦,等.基于CiteSpace和VOSviewer对女贞子的研究现状与热点分析[J].特产研究,2024,46(3):47-55.
[53] LIU H, FANG X, MA Q, et al. Research hotspots of polycystic ovary syndrome and hyperandrogenism from 2008 to 2022: bibliometric analysis. Gynecol Endocrinol. 2024;40(1):2326102.
[54] 贾炜姣,代广斌,耿国帅,等.膜片钳技术在细胞电生理研究方面的最新应用[J].高校化学工程学报,2018,32(4):767-778.
[55] LLANOS MA, ENRIQUE N, ESTEBAN-LOPEZ V, et al. A combined ligand- and structure-based virtual screening to identify novel NaV1.2 blockers: in vitro patch clamp validation and in vivo anticonvulsant activity. J Chem Inf Model. 2023;63(22):7083-7096.
[56] DALLAS ML, BELL D. Advances in ion channel high throughput screening: where are we in 2023? Expert Opin Drug Discov. 2024;19(3):331-337.
[57] YANG Y, LIU A, TSAI CT, et al. Cardiotoxicity drug screening based on whole-panel intracellular recording. Biosens Bioelectron. 2022;216:114617.
[58] ZHAO Q, ZHANG X, LONG S, et al. Licochalcone mediates the pain relief by targeting the voltage-gated sodium channel. Mol Pharmacol. 2023;104(4):133-143.
[59] GONG JH, ZHANG CM, WU B, et al. Central and peripheral analgesic active components of triterpenoid saponins from Stauntonia chinensis and their action mechanism. Front Pharmacol. 2023;14:1275041.
[60] ANNECCHINO LA, SCHULTZ SR. Progress in automating patch clamp cellular physiology. Brain Neurosci Adv. 2018;2: 2398212818776561.
|