[1] 刘俊田.动脉粥样硬化发病的炎症机制的研究进展[J].西安交通大学学报(医学版),2015,36(2):141-152.
[2] KONG P, CUI ZY, HUANG XF, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7(1): 131.
[3] HU S, ZHANG X, DING Y, et al. Inhibition of SPARC signal by aerobic exercise to ameliorate atherosclerosis. Int Immunopharmacol. 2024;132:111856.
[4] 刘晓涵,张琴,杨树龙,等.细胞焦亡在动脉粥样硬化发生中的作用[J].中华高血压杂志,2023,31(12):1203-1210.
[5] 张国安,石践,宋宝国,等.组蛋白脱乙酰酶1基因抑制人脐静脉内皮细胞焦亡并减轻动脉粥样硬化及炎性反应[J].中国组织工程研究,2025,29(25): 5351-5361.
[6] 于宁,宋囡,王莹,等.四妙勇安汤抑制焦亡通路TLR4/NLRP3/Caspase-1防治动脉粥样硬化机制研究[J].中华中医药学刊,2021,39(8):199-203+279.
[7] 曹朝晖,吴颛,胡小波.细胞焦亡参与动脉粥样硬化形成的分子机制新进展[J].中国动脉硬化杂志,2021,29(7):560-565.
[8] LIBBY P. Inflammation and the pathogenesis of atherosclerosis. Vascul Pharmacol. 2024;154:107255.
[9] ZHANG S, HONG F, MA C, et al. Hepatic Lipid Metabolism Disorder and Atherosclerosis. Endocr Metab Immune Disord Drug Targets. 2022;22(6):590-600.
[10] WANG T, CHENG Z, ZHAO R, et al. Sirt6 enhances macrophage lipophagy and improves lipid metabolism disorder by regulating the Wnt1/β-catenin pathway in atherosclerosis. Lipids Health Dis. 2023;22(1):156.
[11] 穆亚敏,宋志勇,刘启明,等.肿瘤坏死因子-α诱导蛋白8样分子-2通过NF-κB信号通路影响LPS诱导的支气管上皮细胞分泌炎症因子[J].中国免疫学杂志,2021,37(8):970-974.
[12] CHU T, WANG Y, WANG S, et al. Kaempferol regulating macrophage foaming and atherosclerosis through Piezo1-mediated MAPK/NF-κB and Nrf2/HO-1 signaling pathway. J Adv Res. 2024. doi: 10.1016/j.jare.2024.11.016.
[13] FENG X, DU M, LI S, et al. Hydroxysafflor yellow A regulates lymphangiogenesis and inflammation via the inhibition of PI3K on regulating AKT/mTOR and NF-κB pathway in macrophages to reduce atherosclerosis in ApoE-/- mice. Phytomedicine. 2023;112:154684.
[14] HU S, HU Y, LONG P, et al. The effect of tai chi intervention on NLRP3 and its related antiviral inflammatory factors in the serum of patients with pre-diabetes. Front Immunol. 2022;13:1026509.
[15] 张宇擎,杨慧.炎性小体诱导的细胞焦亡在动脉粥样硬化斑块发生发展中的作用[J].心肺血管病杂志,2020,39(9):1134-1135+1140.
[16] CHEN P, LI X. NLRP3 inflammasome in atherosclerosis: Mechanisms and targeted therapies. Front Pharmacol. 2024;15:1430236.
[17] DUEWELL P, KONO H, RAYNER KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293): 1357-1361.
[18] ZHENG F, XING S, GONG Z, et al. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediators Inflamm. 2014;2014:507208.
[19] 田光晶.亚麻油对动脉粥样硬化的改善作用及其机制研究[D].北京:中国农业科学院,2017.
[20] WANG D, YU X, GAO K, et al. Sweroside alleviates pressure overload-induced heart failure through targeting CaMKⅡδ to inhibit ROS-mediated NF-κB/NLRP3 in cardiomyocytes. Redox Biol. 2024;74:103223.
[21] CHE J, WANG H, DONG J, et al. Human umbilical cord mesenchymal stem cell-derived exosomes attenuate neuroinflammation and oxidative stress through the NRF2/NF-κB/NLRP3 pathway. CNS Neurosci Ther. 2024;30(3):e14454.
[22] 王淑琪,李慧,杨晓强,等.建立大鼠动脉粥样硬化模型的研究进展[J].中国医药导报,2020,17(12):45-48+68.
[23] GENCOGLU H, ORHAN C, TUZCU M, et al. Effects of walnut oil on metabolic profile and transcription factors in rats fed high-carbohydrate-/-fat diets. J Food Biochem. 2020;44(7):e13235.
[24] 陈默然,沈楠,雷钧涛,等.野生山核桃油对去卵巢大鼠抗氧化能力与海马细胞凋亡的影响[J].食品科学,2011,32(9):272-275.
[25] MIAO F, SHAN C, SHAH SAH, et al. Effect of walnut (Juglans sigillata) oil on intestinal antioxidant, anti-inflammatory, immunity, and gut microbiota modulation in mice. J Food Biochem. 2021;45(1):e13567.
[26] 缪福俊,王宣军,宁德鲁,等.核桃油对葡聚糖硫酸钠诱导小鼠结肠炎的影响[J].中国油脂,2021,46(2):72-76+81.
[27] 刘磊,焦向英,张炜芳,等.高脂饲料及维生素D3联合应用建立大鼠动脉粥样硬化模型[J].山西医科大学学报,2005,36(6):681-683+692.
[28] TANG J, LI T, XIONG X, et al. Colchicine delivered by a novel nanoparticle platform alleviates atherosclerosis by targeted inhibition of NF-κB/NLRP3 pathways in inflammatory endothelial cells. J Nanobiotechnology. 2023;21(1):460.
[29] 曾哲灵,郑菲,王林林,等.樟树籽仁油及长碳链食用油脂对大鼠血脂及动脉硬化的影响[J].食品工业科技,2013,34(9):340-343.
[30] 刘皓涵,梁琪琪,王国良,等.核桃油中亚麻酸对小鼠血脂和肝功能的影响[J].中国油脂,2020,45(8):51-54.
[31] LI BW, LIU Y, ZHANG L, et al. Cytotoxin-associated gene A (CagA) promotes aortic endothelial inflammation and accelerates atherosclerosis through the NLRP3/caspase-1/IL-1β axis. FASEB J. 2021;35(11):e21942.
[32] LIBBY P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524-533.
[33] SATISH M, AGRAWAL DK. Atherothrombosis and the NLRP3 inflammasome - endogenous mechanisms of inhibition. Transl Res. 2020;215:75-85.
[34] 李帅帅,罗瑞熙,韦亚琼,等.黄芩苷通过调控TLR4/NF-κB信号通路对脂多糖诱导RAW264.7细胞极化的影响[J].中成药,2022,44(12):3835-3841.
[35] SHIN D, KIM S, LEE H, et al. PCSK9 stimulates Syk, PKCδ, and NF-κB, leading to atherosclerosis progression independently of LDL receptor. Nat Commun. 2024;15(1):2789.
[36] YALCINKAYA M, LIU W, XIAO T, et al. Cholesterol trafficking to the ER leads to the activation of CaMKII/JNK/NLRP3 and promotes atherosclerosis. J Lipid Res. 2024;65(4):100534.
[37] 郑艳,马振,王南丁,等.基于PI3K/AKT/eNOS通路研究芪丹通脉片对ApoE-/-小鼠动脉粥样硬化易损斑块的影响[J].中医学报,2024,39(1):55-62.
[38] HOU C, JIANG X, SHENG W, et al. Xinmaikang (XMK) tablets alleviate atherosclerosis by regulating the SREBP2-mediated NLRP3/ASC/Caspase-1 signaling pathway. J Ethnopharmacol. 2024;319(Pt 2):117240.
[39] ZHANG X, EVANS TD, CHEN S, et al. Loss of Macrophage mTORC2 Drives Atherosclerosis via FoxO1 and IL-1β Signaling. Circ Res. 2023;133(3):200-219.
[40] LU N, CHENG W, LIU D, et al. NLRP3-Mediated Inflammation in Atherosclerosis and Associated Therapeutics. Front Cell Dev Biol. 2022;10:823387.
[41] TAN J, WAN L, CHEN X, et al. Conjugated Linoleic Acid Ameliorates High Fructose-Induced Hyperuricemia and Renal Inflammation in Rats via NLRP3 Inflammasome and TLR4 Signaling Pathway. Mol Nutr Food Res. 2019;63(12):e1801402. |