[1] MANSOURIAN M, SHANEI A. Evaluation of pulsed electromagnetic field effects: a systematic review and meta-analysis on highlights of two decades of research in vitro studies. Biomed Res Int. 2021. doi:10.1155/2021/6647497.
[2] YAP JLY, TAI YK, JÜRG FRHLICH, et al. Ambient and supplemental magnetic fields promote myogenesisviaa TRPC1-mitochondrial axis: evidence of a magnetic mitohormetic mechanism. FASEB J. 2019; 33(11):12853-12872.
[3] WONG CJK, TAI YK, YAP JLY, et al. Brief exposure to directionally-specific pulsed electromagnetic fields stimulates extracellular vesicle release and is antagonized by streptomycin: a potential regenerative medicine and food industry paradigm. Biomaterials. 2022;287:121658.
[4] FRANCO-OBREGÓN A. Magnetic mitohormesis: a non-invasive therapy for inflammatory disorders. Biocell. 2023;47(2):239-244.
[5] STEPHENSON MC, KRISHNA L, PANNIR SELVAN RM, et al. Magnetic field therapy enhances muscle mitochondrial bioenergetics and attenuates systemic ceramide levels following ACL reconstruction: Southeast Asian randomized controlled pilot trial. J Orthop Translat. 2022;35:99-112.
[6] VENUGOBAL S, TAI YK, GOH J, et al. Brief, weekly magnetic muscle therapy improves mobility and lean body mass in older adults: a Southeast Asia community case study. Aging (Albany NY). 2023;15: 1768-1790.
[7] TAI YK, NG C, PURNAMAWATI K, et al. Magnetic fields modulate metabolism and gut microbiome in correlation with Pgc-1αexpression: follow-up to an in vitro magnetic mitohormetic study. FASEB J. 2020. doi:10.1096/fj.201903005RR.
[8] 厉中山,王春露,刘洁,等.短期低频脉冲磁场诱导经典瞬时感受器电位通道1对肱二头肌最大自主收缩力与力量耐力的影响[J].中国组织工程研究,2023,27(11):1796-1804.
[9] 厉中山,白石,刘洁,等.短期低频脉冲磁场诱导经典瞬时感受器电位通道1对局部肌肉肌力提升后的保持与衰减变化轨迹[J].中国组织工程研究,2023,27(23):3721-3727.
[10] 厉中山,包义君,刘洁,等.低频脉冲磁场诱导TRPC1改善COVID-19患者康复期下肢的肌肉无力症状[J].中国组织工程研究, 2024,28(16):2605-2612.
[11] SUCHOMEL TJ, NIMPHIUS S, BELLON CR, et al. The importance of muscular strength: training considerations. Sports Med. 2018;48(4): 765-785.
[12] FRY CS, KIRBY TJ, KOSMAC K, et al. Myogenic progenitor cells control extracellular matrix production by fibroblasts during skeletal muscle hypertrophy. Cell Stem Cell. 2017;20(1):56-69.
[13] MOQUIN PA, WETMORE AB, CARROLL KM, et al. Lean body mass and muscle cross-sectional area adaptations among college age males with different strength levels across 11 weeks of block periodized programmed resistance training. Int J Environ Res Public Health. 2021; 18(9):4735.
[14] KUBO K, IKEBUKURO T, YATA H, et al. Time course of changes in muscle and tendon properties during strength training and detraining. J Strength Cond Res. 2010;24(2):322-331.
[15] TESCH P. Skeletal muscle hypertrophy adaptions consequent to long-term heavy resistance exercise. Med Sci Sports Exerc. 1988;20:132-134.
[16] RHEA MR, ALVAR BA, BURKETT LN, et al. A meta-analysis to determine the dose response for strength development. Med Sci Sports Exerc. 2003;35(3):456-464.
[17] SCHOENFELD B J, OGBORN D, KRIEGER JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J Sport Sci. 2017;35(11): 1-10.
[18] LEVINE JA, ABBOUD L, BARRY M, et al. Measuring leg muscle and fat mass in humans: comparison of CT and dual-energy X-ray absorptiometry. J Appl Physiol (1985). 2000;88:452-456.
[19] BEAUDART C, MCCLOSKEY E, BRUYÈRE O, et al Sarcopenia in daily practice: assessment and management. BMC Geriatr. 2016;16(1):170.
[20] FRANCHI MV, LONGO S, MALLINSON J, et al. Muscle thickness correlates to muscle cross sectional area in the assessment of strength training induced hypertrophy. Scand J Med Sci Sports. 2018;28(3): 846-853.
[21] PERKISAS S, BASTIJNS S, BAUDRY S, et al. Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update. Eur Geriatr Med 2021;12:45-59.
[22] KAWAKAMI Y, ABE T, FUKUNAGA T. Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol. 1993;74(6):2740-2744.
[23] BEMBEN MG, SATO Y, ABE T. The use of anthropometry for assessing muscle size. Int J Kaatsu Training Res. 2005;1(1):33-36.
[24] MATTA T, SIMAO, DE SALLES BF, et al. Strength training’s chronic effects on muscle architecture parameters of different arm sites. J Strength Cond Res. 2011;25(6):1711-1717.
[25] MERRIGAN JJ, WHITE JB, ELIOT HY, et al. Differences in elbow extensor muscle characteristics between resistance-trained men and women. Eur J Appl Physiol. 2018;118:2359-2366.
[26] CLEARY CJ, NABAVIZADEH O, YOUNG KL, Herda AA (2022) Skeletal muscle analysis of panoramic ultrasound is reliable across multiple raters. PLoS One. 2022;17(5):e0267641.
[27] SILVA CRS, COSTA ADS, ROCHA T, et al. Quadriceps muscle architecture ultrasonography of individuals with type 2 diabetes: reliability and applicability. PLoS One. 2018;13(10):e0205724.
[28] KONRAD P. The ABC of EMG. Noraxon USA, Inc. 2005.
[29] PARATE D, FRANCO-OBREGÓN A, FRÖHLICH J, et al. Enhancement of mesenchymal stem cell chondrogenesis with short-term low intensity pulsed electromagnetic fields. Sci Rep. 2017;7(1):9421.
[30] SARITAS EU, GOODWILL PW, ZHANG GZ, et al. Magnetostmulaton limits in magnetc partcle imaging. IEEE Trans Med Imaging. 2013;32(9):1600-1610.
[31] SCHMALE I, GLEICH B, SCHMIDT J, et al. Human PNS and SAR study in the frequency range from 24 to 162 kHz// Magnetc Partcle Imaging (IWMPI), 2013 Internatonal Workshop on. IEEE, 2013.
[32] GÉRARD R, GOJON L, DECLEVE P, et al. The effects of eccentric training on biceps femoris architecture and strength: a systematic review with meta-analysis. J Athl Train. 2020;55(5):501-514.
[33] BROWN SH, GERLING ME. Importance of sarcomere length when determining muscle physiological cross-sectional area: a spine example. Proc Inst Mech Eng H. 2012;226(5):384-388.
[34] ROBERTS MD, HAUN CT, MOBLEY CB, et al. Physiological differences between low versus high skeletal muscle hypertrophic responders to resistance exercise training: current perspectives and future research directions. Front Physiol. 2018;9:834.
[35] TROMBETTI A, REID K, HARS M, et al. Age-associated declines in muscle mass, strength, power, and physical performance: impact on fear of falling and quality of life. Osteoporos Int. 2016;27(2):463-471.
[36] TIMMINS RG, SHIELD AJ, WILLIAMS M D, et al. Architectural adaptations of muscle to training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Brit J Sport Med. 2016;50(23):1467-1472.
[37] HE J, QI ZT, DING SZ. Effect of Calcineurin transduction pathway on skeletal muscle remodeling. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2011;15(2):343-346.
[38] FREYSSENET D. Mécanismes cellulaires et moléculaires du contrôle de la masse musculaire lors d’un entraînement en force. Sci Sports. 2006;21(2):74-79.
[39] ZANOU N, SCHAKMAN O, LOUIS P, et al. Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration. J Biol Chem. 2012;287(18): 14524-14534.
[40] MA R, RUNDLE D, JACKSJ, et al. Inhibitor of myogenic family, a novel suppressor of store-operated currents through an interaction with TRPC1. J Biol Chem. 2003;278:52763-52772.
[41] PILEGAARD H, SALTIN B, NEUFER PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol. 2003;546(3):851-858.
[42] JENINGA EH, SCHOONJANS K, AUWERX J. Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene. 2010;29(33):4617-4624.
[43] HARGREAVES M, SPRIET LL. Skeletal muscle energy metabolism during exercise. Nat Metab. 2020;2(9):817-828
[44] CORMIE P, MCGUIGAN MR, NEWTON RU. Developing maximal neuromuscular power. Sports Med. 2011;41(2):125-146.
[45] CARLSEN RC, VILLARIN JJ. Membrane excitability and calcium homeostasis in exercising skeletal muscle. Am J Phys Med Rehabil. 2002;81(11 Suppl):S28-S39.
[46] ROBERTS BM, NUCKOLS G, KRIEGER JW. Sex differences in resistance training: a systematic review and meta-analysis. J Strength Cond Res. 2022;34(5)1448-1460. |