中国组织工程研究 ›› 2021, Vol. 25 ›› Issue (33): 5301-5306.doi: 10.12307/2021.317

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

腰椎斜外侧椎间融合后融合器侧方移位的生物力学有限元分析

吕  杰1,王永峰2,原  杰2,徐朝健2,秦一川1,郝家齐1   

  1. 1山西医科大学第二临床医学院 ,山西省太原市   030001;2山西医科大学第二医院骨科,山西省太原市   030001
  • 收稿日期:2020-12-03 修回日期:2020-12-12 接受日期:2021-01-16 出版日期:2021-11-28 发布日期:2021-08-03
  • 通讯作者: 王永峰,博士,主任医师,硕士生导师,山西医科大学第二医院骨科,山西省太原市 030001
  • 作者简介:吕杰,男,1995年生,山西省天镇县人,汉族,山西医科大学在读硕士,主要从事脊柱外科方向的研究。
  • 基金资助:
    山西省自然科学基金资助项目(201801D121220),项目负责人:王永峰

Biomechanical finite element analysis of lateral displacement of the cage after oblique lumbar interbody fusion

Lü Jie1, Wang Yongfeng2, Yuan Jie2, Xu Zhaojian2, Qin Yichuan1, Hao Jiaqi1   

  1. 1Second Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China; 2Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2020-12-03 Revised:2020-12-12 Accepted:2021-01-16 Online:2021-11-28 Published:2021-08-03
  • Contact: Wang Yongfeng, MD, Chief physician, Master’s supervisor, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • About author:Lü Jie, Master candidate, Second Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Supported by:
    the Natural Science Foundation of Shanxi Province, No. 201801D121220 (to WYF)

摘要:

文题释义:
斜外侧椎间融合:是近年来脊柱外科开展的一项微创椎间融合技术。该术式从腹膜后的腹部血管鞘和腰大肌前缘之间的生理间隙进入,置入器械通道来处理手术节段椎间盘,通过置入更大的融合器撑开椎间隙达到椎管和椎间孔的间接减压。
融合器移位:术后第一次复查影像与术前相比位移超过 3 mm 即为融合器移位,而腰椎融合后融合器移位多发生于术后 3个月内。
背景:斜外侧椎间融合是当前临床治疗腰椎退行性疾病的有效手段,而术后发生融合器侧移的处理方式尚无定论,利用有限元法进行斜外侧椎间融合后不同情况的生物力学分析成为越来越多研究者的一种选择。
目的:运用有限元分析法评估斜外侧椎间融合后椎间融合器(cage)侧方移位对腰椎生物力学的影响,为术后该情况的处理提供生物力学依据。
方法:选择1名健康男性行腰椎CT扫描,获得其扫描数据。利用Mimics、Geomagic、solidworks和ansys workbench软件建立L3-L5三维有限元模型,设定为正常对照组,同时建立斜外侧椎间融合独立融合固定组(SA组)和斜外侧椎间融合联合双侧椎弓根钉棒固定组(BPS组)模型。根据cage移位程度将SA组具体分为:cage无移位模型(SA0)、cage右缘中点移位至L5上终板横径右1/8点(SA1)、2/8点(SA2)、3/8点(SA3)、4/8点(SA4)。在SA分组基础上,联合钉棒固定的模型分别是BPS0、BPS1、BPS2、BPS3、BPS4。对不同模型施加相同的加载条件,模拟脊椎前屈、后伸、侧屈及旋转运动状态,观察各模型不同工况下腰椎活动度以及椎间融合器和钉棒系统的应力峰值。
结果与结论:①SA0、SA1、SA2在不同运动状态的活动度均小于正常对照组,而SA3在后伸以及SA4在后伸、右侧屈状态的活动度大于正常对照组;②在不同状态下,SA组和BPS组的活动度和融合器应力峰值在整体上均随融合器侧移距离的增加而呈现上升趋势;③当cage处于同一位置时,BPS组在所有状态下的活动度和融合器应力峰值均小于SA组;④在各个状态下,BPS组的钉棒系统应力峰值为:BPS0<BPS1<BPS2<BPS3<BPS4;⑤提示当斜外侧椎间融合独立融合固定后发生融合器左侧移位时,随移位距离增加,各种状态下腰椎活动度和融合器的应力峰值在整体上均逐渐增加,存在脊柱失稳趋势。在此基础上联合双侧椎弓根钉固定,可以获得较好的腰椎生物力学稳定性。
https://orcid.org/0000-0001-8733-3382 (吕杰) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 斜外侧椎间融合, 融合器移位, 活动度, 有限元分析, 生物力学

Abstract: BACKGROUND: Oblique lateral interbody fusion is an effective method for the current clinical treatment of lumbar degenerative diseases. However, the treatment for postoperative lateral displacement of the cage has not been determined yet. Therefore, using finite element analysis to analyze the biomechanics of different conditions after oblique lateral interbody fusion has become a choice for more and more researchers.  
OBJECTIVE: To evaluate the effect of lateral displacement of cage on the lumbar biomechanics after oblique lateral interbody fusion with finite element analysis, and to provide biomechanical basis for the treatment of this condition.
METHODS:  A healthy male was selected to undergo lumbar CT scanning, and the scanning data were obtained. The three-dimensional finite element model of L3-L5 was established by Mimics, Geomagic, SolidWorks and ANSYS Workbench software, and was set as normal control group. Oblique lateral interbody fusion Stand alone fixation group (SA) and oblique lateral interbody fusion with bilateral pedicle screws fixation group (BPS) were established. According to the degree of Cage displacement, the SA group was divided into five groups: the cage non-displaced model (SA0), the midpoint of the right edge of the cage shifted to the right 1/8 point (SA1), 2/8 point (SA2), 3/8 point (SA3), and 4/8 point (SA4) of the transverse diameter of the upper endplate of L5. On the basis of SA grouping, the models with bilateral pedicle screws were BPS0, BPS1, BPS2, BPS3 and BPS4, respectively. The same loading conditions were applied to different models to simulate the flexion, extension, lateral flexion and rotation of the spine. The range of motion of the lumbar spine and the stress peak of the cage and screw-rod system were observed under different working conditions.  
RESULTS AND CONCLUSION: (1) The range of motion of SA0, SA1 and SA2 was lower than that of normal control group in different motion states, while the range of motion of SA3 and SA4 was greater than that of normal control group in extension and right flexion states. (2) Under different conditions, the range of motion and the peak stress of the cage in the SA group and the BPS group were increased with the increase of the lateral distance of the cage. (3) When the cage was in the same position, the activity and the peak stress of the cage in all states in the BPS group were lower than that in the SA group. (4) In each state, the peak stress of the screw and rod system in the BPS group was BPS0 < BPS1 < BPS2 < BPS3 < BPS4. (5) It is concluded that when the left side of the cage was displaced after oblique lateral interbody fusion stand alone, the range of motion of the lumbar spine and the stress peak of the cage in various states were gradually increased with the increase of the displacement distance, showing a tendency of spinal instability. On this basis, combined with bilateral pedicle screw fixation, better biomechanical stability of the lumbar spine can be obtained.

Key words: oblique lateral interbody fusion, cage displacement, range of motion, finite element analysis, biomechanics

中图分类号: