中国组织工程研究 ›› 2018, Vol. 22 ›› Issue (6): 902-907.doi: 10.3969/j.issn.2095-4344.0066

• 纳米生物材料 nanobiomaterials • 上一篇    下一篇

新型纳米仿生-防粘连复合型疝补片的力学性能及细胞相容性

唐  骁1,叶小龙1,黄江龙1,杨晓峰1,郑宗珩1,魏  波1,陈图锋1,黄  勇1,罗林波2,詹泽丰2,卫洪波1 
  

  1. 1中山大学附属第三医院胃肠外科,广东省广州市  510630;2广州迈普再生医学科技有限公司,广东省广州市  510660
  • 收稿日期:2018-01-22 出版日期:2018-02-28 发布日期:2018-02-28
  • 通讯作者: 卫洪波,主任医师,中山大学附属第三医院胃肠外科,广东省广州市 510630
  • 作者简介:唐骁,女,1990年生,重庆市人,汉族,2016年中山大学毕业,博士,医师,主要从事疝、结直肠癌研究。
  • 基金资助:
    广东省科技计划项产学研合作项目(2014B090901066);广州市科技计划项目产学研协同创新重大专项(2014Y2-00503);广东省自然科学基金-博士启动(2015A030310052)

Mechanical properties and cytocompatibility of a new-type nano-bionic anti-adhesion hernia mesh

Tang Xiao1, Ye Xiao-long1, Huang Jiang-long1, Yang Xiao-feng1, Zheng Zong-heng1, Wei Bo1, Chen Tu-feng1, Huang Yong1, Luo Lin-bo2, Zhan Ze-feng2, Wei Hong-bo1 
  

  1. 1Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China; 2Medprin Regenerative Medical Technologies Co., Ltd., Guangzhou 510660, Guangdong Province, China
  • Received:2018-01-22 Online:2018-02-28 Published:2018-02-28
  • Contact: Wei Hong-bo, Chief physician, Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
  • About author:Tang Xiao, M.D., Physician, Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
  • Supported by:
    the University-Industry Collaboration for Science and Technology Research of Guangdong Province, No. 2014B090901066; Major Innovation Special Plan & the University-Industry Collaboration for Science and Technology Research of Guangdong Province, No. 2014Y2-00503; the Natural Science Foundation of Guangdong Province for Doctoral Startup Project, No. 2015A030310052

摘要:

文章快速阅读:

 

文题释义:
纳米仿生材料:是通过纳米技术改变传统材料结构获得的新型材料,具有良好生物理化性能及高孔隙率,其空间组成同人体组织细胞外基质相似性高,有利于细胞的黏附、增殖和蛋白分泌活动;高通网络结构有利于营养物质的吸收及废物排出;具有良好的生物相容性,有利于种子细胞的增殖、分化形成新的功能性组织,促进局部组织修复。
细胞相容性:是指材料植入生物体内后,植入材料与生物组织相互作用,其共同产生的物理、化学、组织学效应,包括植入物对目的细胞毒性、黏附、增殖、形态、排列、分化、代谢活性的影响。具有良好的生物相容性是补片材料能成为理想补片的最基本要求。
 
背景:前期研究制备了新型纳米仿生-防粘连复合型疝补片。
目的:探讨新型纳米仿生-防粘连复合型疝补片的力学效应及细胞相容性。
方法:将新型疝补片样本夹持在纺织物检测仪上,检测其拉伸强度。将小鼠成纤维细胞L929与新型纳米仿生防粘连复合型疝补片共培养,培养1,3,5 d后,电镜观察补片表面细胞结构。将小鼠成纤维细胞L929分别与新型纳米仿生-防粘连复合型疝补片、聚丙烯补片、聚酯补片共培养,以细胞单独培养为阴性对照组,培养1,3,5 d后,MTS法检测各组细胞增殖率,判定细胞毒性;培养3 d后,Western blot检测各组细胞Ⅰ、Ⅲ型胶原含量。
结果与结论:①新型纳米仿生-防粘连复合型疝补片平均拉伸强度为31.2 N;②随培养时间延长,新型纳米仿生-防粘连复合型疝补片表面的L929细胞数量逐渐增加,其沿材料表面纤维束铺展生长,伸出伪足,形成成纤维细胞的正常形态结构,延伸形成多角形、梭形细胞,与材料形成良好的交联;在第5天时,细胞间相互交汇连接形成完整的细胞层,完全覆盖纳米纤维支架间的原有孔隙;③新型纳米仿生-防粘连复合型疝补片的纳米纤维层细胞毒性为0级,传统的聚丙烯、聚酯补片细胞毒性分级为1级,各组材料的细胞毒性均达到植入人体的要求,而新型疝补片具有更好的生物学性能;④培养3 d后,各组Ⅰ、Ⅲ型胶原含量比较差异均无显著性意义;⑤结果表明,新型纳米仿生-防粘连复合型疝补片有良好的力学性能及细胞相容性。

关键词: 疝补片, 纳米纤维, 细胞相容性, 成纤维细胞, 胶原, 生物材料

Abstract:

BACKGROUND: A new-type nano-bionic anti-adhesion hernia mesh was developed in our previous research.
OBJECTIVE: To investigate the mechanical properties and cytocompatibility of the new-type nano-bionic anti-adhesion hernia mesh.
METHODS: The tensile strength of the compound hernia mesh was detected using a textile detector. Mouse fibroblasts (L929) were cultured with the compound hernia mesh, and cell structures on the mesh surface were observed under electron microscope at 1, 3, 5 days after culture. In addition, L929 cells were co-cultured with compound hernia mesh, polypropylene patch, and polyester patch, respectively. Cells cultured alone were used as negative controls. After 1, 3, 5 days of culture, MTS array was used to detect cell proliferation and evaluate cytotoxicity; after 3 days of culture, western blot was used to detect the content of type I and III collagens.
RESULTS AND CONCLUSION: The average tensile strength of the compound hernia mesh was 31.2 N. The number of fibroblasts on the nanofibrous layer of the compound hernia mesh increased as long as cultured. The cells spread along the nanofibers and pseudopodia extended from the cells formed polygon and fusiform structures, with a good cross-linking with the mesh. A complete cell layer covered all pores of the nanofibers at 5 days. The cytotoxicity of the nanofibrous layer of the compound hernia mesh was graded 0, and the cytotoxicity was graded 1 of polypropylene and polyester patches. All the three kinds of patches fulfilled the implantation requirements, and the compound hernia mesh had better biological properties. No significant differences were found among groups in the contents of type I and III collagens at 3 days of culture. To conclude, the new-type nano-bionic anti-adhesion hernia mesh has good mechanical properties and cytocompatibility.

Key words: Nanofibers, Polypropylenes, Hernia, Fibroblasts, Tensile Strength, Tissue Engineering

中图分类号: