中国组织工程研究 ›› 2017, Vol. 21 ›› Issue (15): 2388-2394.doi: 10.3969/j.issn.2095-4344.2017.15.017

• 数字化骨科 digital orthopedics • 上一篇    下一篇

三维有限元分析腰骶椎结构的动态特性

武晓丹1,张顺心1,范顺成1,李 晔2,贾少薇1,谢俊德1,韩 立3,4   

  1. 1河北工业大学机械学院,天津市 300130;2中国医学科学院北京协和医院,北京市 100005;3天津医科大学医学影像学院,天津市 300203;4美国密歇根大学安娜堡分校医学院,美国   48105
  • 出版日期:2017-05-28 发布日期:2017-06-07
  • 通讯作者: 韩立,副教授,天津医科大学,天津市 300070 张顺心,教授,硕士生导师,河北工业大学,天津市 300130
  • 作者简介:武晓丹,女,1990年生,河北省石家庄市人,汉族,2017年河北工业大学毕业,硕士,主要从事脊柱的生物力学方面的研究。
  • 基金资助:

    天津市应用基础与前沿技术研究计划资助项目(13JCYBJC41200)

Dynamic characteristics of the lumbosacral vertebrae based on three-dimensional finite element models   

Wu Xiao-dan1, Zhang Shun-xin1, Fan Shun-cheng1, Li Ye2, Jia Shao-wei1, Xie Jun-de1, Han Li 3, 4   

  1. 1School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China; 2Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100005, China; 3School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China; 4Medical College, University of Michigan, Ann Arbor, Michigan 48105, USA
  • Online:2017-05-28 Published:2017-06-07
  • Contact: Han Li, Associate professor, School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China; Medical College, University of Michigan, Ann Arbor, Michigan 48105, USA Zhang Shun-xin, Professor, Master’s supervisor, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
  • About author:Wu Xiao-dan, Master, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
  • Supported by:

    the Application Basic and Advanced Technology Research Program of Tianjin City, No. 13JCYBJC41200

摘要:

文章快速阅读

 
 

 

文题释义
模态分析:模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。通过模态分析方法可以得到结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。
谐响应分析:用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应,分析过程中只计算结构的稳态受迫振动,不考虑激振开始时的瞬态振动,谐响应分析的目的在于计算出结构在几种频率下的响应值(通常是位移)对频率的曲线,从而使设计人员能预测结构的持续性动力特性,验证设计是否能克服共振、疲劳以及其他受迫振动引起的有害效果。
 
摘要
背景:有文献对人体正常脊柱腰骶椎进行了固有模态分析及谐响应分析,但尚未有研究涉及对比椎弓根螺钉内固定前后腰骶椎的固有模态分析及谐响应分析。
目的:采用三维有限元方法探讨人体腰骶椎的动力学特性。
方法:基于CT扫描图像建立并验证经椎弓根螺钉系统内固定前后腰骶椎L1-S1节段有限元模型,然后对固定前后腰骶椎模型分别进行有限元模态分析和谐响应分析。
结果与结论:①在腰骶椎模型的腰椎L1,L3,L5节段棘突处选取代表性节点,节点编号分别为A,B,C;②内固定后腰骶椎模型的各个节点在Y,Z方向上位移最大峰值比正常腰骶椎模型位移最大峰值均明显减小,表明螺钉内固定系统对腰骶椎部分起到了保护作用,使得固定后的腰骶椎在受到外界激励时振幅减小,对外界激励的敏感性减弱;③腰骶椎的模态分析是进一步进行动力学分析的基础,确定了腰骶椎的固有频率、振型和振幅等振动参数。通过谐响应分析研究简谐载荷对人体脊柱腰骶椎L1-S1节段的影响,对于腰骶椎的振动特性分析方面具有重要意义。
 
中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程
ORCID: 0000-0002-2449-3124(武晓丹)

关键词: 骨科植入物, 数字化骨科, 有限元, 生物力学, 振动, 腰骶椎, 模型, 内固定系统, ABAQUS, 模态分析, 动力学, 谐响应

Abstract:

BACKGROUND: Inherent modal analysis and harmonic response analysis on the human normal lumbosacral vertebrae have been reported, but there is a lack of comparative research on their modal analysis results before and after pedicle screw fixation.

OBJECTIVE: To explore the dynamic characteristics of human lumbosacral vertebrae using three-dimensional finite element method.
METHODS: Finite element model of lumbosacral vertebrae (L1-S1) before and after pedicle screw fixation was developed and validated based on CT images, and the modal analysis and harmonic response analysis were then conducted.
RESULTS AND CONCLUSION: (1) Representative nodes were selected at the spinous process segments of L1, L3 and L5, and numbered as A, B, and C, respectively. (2) The maximum displacement of each node in Y and Z directions of lumbosacral vertebral model after internal fixation was significantly decreased compared with those of the normal lumbosacral vertebral model, suggesting that screw fixation system plays a protective role in lumbosacral vertebrae, and reduces its amplitude under external load, thus diminishing its sensitivity to external load. (3) The lumbosacral vertebral modal analysis can provide basis for further study on dynamic analysis, and the parameters such as natural frequency, modal shape and vibration amplitude of the lumbar spine have been determined.

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程

Key words: Lumbar Vertebrae, Internal Fixators, Biomechanics, Finite Element Analysis, Kinetics, Tissue Engineering

中图分类号: