中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (39): 5867-5872.doi: 10.3969/j.issn.2095-4344.2016.39.014

• 数字化骨科 digital orthopedics • 上一篇    下一篇

有限元法分析不同负荷下髋臼区的应力分布

张海峰1,尹爱华1,董 毅1,宋翠荣1,刘媛媛1,任国山2,庞 胤1   

  1. 1沧州医学高等专科学校,河北省沧州市   0610012河北医科大学,河北省石家庄市   050017
  • 修回日期:2016-07-08 出版日期:2016-09-23 发布日期:2016-09-23
  • 通讯作者: 庞胤,硕士,沧州医学高等专科学校,河北省沧州市 061001
  • 作者简介:张海峰,男,1981年生,河北省盐山县人,汉族,2014年河北医科大学毕业,硕士,讲师,医师,主要从事关节、生物力学方面的研究。
  • 基金资助:

    2015年度沧州市科学技术研究与发展指导计划项目(151302001)

Finite element method for analyzing the stress distribution of acetabulum under different loads

Zhang Hai-feng1, Yin Ai-hua1, Dong Yi1, Song Cui-rong1, Liu Yuan-yuan1, Ren Guo-shan2, Pang Yin1   

  1. 1Cangzhou Medical College, Cangzhou 061001, Hebei Province, China; 2Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
  • Revised:2016-07-08 Online:2016-09-23 Published:2016-09-23
  • Contact: Pang Yin, Master, Cangzhou Medical College, Cangzhou 061001, Hebei Province, China
  • About author:Zhang Hai-feng, Master, Lecturer, Physician, Cangzhou Medical College, Cangzhou 061001, Hebei Province, China
  • Supported by:

    the Project of Cangzhou Science and Technology Research and Development in 2015, No. 151302001

摘要:

文章快速阅读:

 

 

文题释义:
髋臼区的应力分布:髋臼是髋骨与股骨之间的中心结构,可分为4个区域:前部、后部、顶部和中心部。正立位时,髋骨应力最大值集中在髋臼顶部后上方区域,后壁下部次之,前壁应力最小。由于髋骨形状不规则,骨科医师对研究髋臼区的应力分布非常关注,鉴于解剖结构复杂,直接测量较为困难,需探索一种准确可行的分析方法。
髋臼区的应力传导:正常负重下,应力经椎骨-骨盆-髋臼-股骨向下传递,随负荷增大,髋臼区域应力值增大。汽车撞击、电梯按键失灵、高空坠落等意外时,髋臼区域的应力主要来自负荷所致的股骨头-髋臼反作用力,膝部或足底的瞬间冲击力将导致髋骨骨折。应力由4条途径传递:经髋臼顶部向附近髂骨传递、沿骨盆界线向骶髂关节传递、向髋臼窝内传递、向耻骨支传递。分析应力传导途径,遇到意外时人们可以屈髋、屈膝,减弱冲击力,起到预防作用。
 
摘要
背景:髋骨形状不规则,解剖结构复杂,难以测量其应力分布及传导过程。
目的:基于CT数据,建立髋骨、股骨上段三维有限元模型,分析正立位下加载不同负荷时髋臼区的应力分布与传递特点,探索髋骨骨折的力学机制。
方法:选择1名成年健康男性进行髋部CT扫描,获得影像数据,将数据导入Mimics 14.0,建立髋骨、股骨上段的三维模型;再经过划分网格、赋材质、转化为有限元模型,利用有限元分析软件Ansys 13.0计算负荷300,600,900,1 200 N时,髋臼前壁、髋臼顶部、髋臼后壁的应力分布,髋臼各区应力值及髋臼单元的位移变化。

结果与结论:①成功建立了髋骨和股骨的三维模型,包括284 183个结点、160 665个单元;②髋臼区应力分布特点:正立位各负荷下,应力最大值位于髋臼顶部后上方区域,后壁次之,前壁最小;应力经4条途径传递:经髋臼顶部向临近髂骨、沿骨盆界线向骶髂关节、向髋臼窝内传导、沿耻骨支方向传导;随加载负荷的增大,应力值增大,传导距离变远,髋臼单元应变量增大;③结果提示,基于CT数据应用Mimics 14.0软件建立的髋臼区三维模型仿真性高,可行有限元试验分析其不同负荷下的应力分布,为髋关节人工假体的设计提供指导数据。
 

关键词: 骨科植入物, 数字化骨科, 髋臼, 三维有限元模型, 有限元分析, 应力分析

Abstract:

BACKGROUND: The hip is a complicated structure and irregular in shape. It is hard to measure stress distribution and transmission.

OBJECTIVE: To establish a three-dimensional finite element model of the hip joint and upper femur, and analyze the stress distribution and transmission characteristics of the acetabulum region under different loads, and explore mechanics mechanism of hip fracture based on CT data. 
METHODS: The three-dimensional finite element hip and femur model were reconstructed in Mimics 14.0 based on the CT data of a healthy adult man. After dividing mesh, assigning material and transforming into finite element model, the stress distributions of anterior wall, the top, and the posterior wall of the acetabulum, the stress of acetabulum areas and displacement of acetabular unit were calculated with finite element software Ansys 13.0 software under 300, 600, 900 and 1 200 N. 
RESULTS AND CONCLUSION: (1) A three-dimensional finite element model of the hip and the femur was successfully established, consisting of 284 183 nodes and 160 665 units. (2) The characteristics of the stress distribution of acetabulum region: the maximal stress was concentrated on the posterosuperior part of acetabular crest, followed by the posterior wall and the anterior wall in order in upright position under different loads. The stress transmitted by four ways: from acetabular crest to ilium, along linea terminalis of pelvis to sacroiliac joint, in the acetabular sockets, and along the pubic ramus. The stress and the propagation distance were increasing as the loads increased. Acetabular element stress variable was increased. (3) Above results indicated that three-dimensional finite element model of the human hip joint established by Mimics 14.0 based on CT data matches the anatomical structure in a great degree, could be used in the biomechanics analysis under different loads, and has a guiding significance for design of artificial hip prosthesis.

 

Key words: Acetabulum, Finite Element Analysis, Stress, Mechanical, Tissue Engineering

中图分类号: