中国组织工程研究 ›› 2014, Vol. 18 ›› Issue (2): 307-313.doi: 10.3969/j.issn.2095-4344.2014.02.024
• 组织构建综述 tissue construction review • 上一篇 下一篇
陈 康,曾意荣,樊粤光,曾建春,李 杰,李飞龙,范 帅
收稿日期:
2013-10-23
出版日期:
2014-01-08
发布日期:
2014-01-08
通讯作者:
曾意荣,博士,教授,硕士生导师,主任医师,广州中医药大学第一附属医院三骨科,广东省广州市 510405
作者简介:
陈康,男,1987年生,广东省汕头市人,医师,主要从事软骨损伤疾病的研究。
基金资助:
国家自然科学基金项目(81273784),广东省自然科学基金项目(1015104070100 0045) ,高等学校博士学科点专项科研基金项目(20104425110011)
Chen Kang, Zeng Yi-rong, Fan Yue-guang, Zeng Jian-chun, Li Jie, Li Fei-long, Fan Shuai
Received:
2013-10-23
Online:
2014-01-08
Published:
2014-01-08
Supported by:
the National Natural Science Foundation of China, No. 81273784; the Natural Science Foundation of Guangdong Province, No. 10151040701000045; Research Fund for the Doctoral Program of Higher Education of China, No. 20104425110011
摘要:
背景:软骨损伤目前仍然是临床上难以完全治愈的一大难题。近来,滑膜间充质干细胞的发现为该病变的治疗带来了新的希望。 目的:综合近几年文献探讨滑膜间充质干细胞的特性、培养条件、临床前及临床研究等关于软骨修复的研究进展。 方法:应用计算机检索1993年1月至2013年5月PubMed数据库和SpringerLink数据库中的相关文章,检索词为“synovial mesenchymal stem cells, cartilage repair”,并参阅其他相关的著作及高影响因子的相关文献. 结果与结论:最终纳入符合标准的文献37篇。滑膜间充质干细胞较之其他间充质干细胞具有更强的增殖、集落形成和软骨化能力。骨关节炎、类风湿关节炎等疾病可影响其细胞特性。已有大量文献集中于其体外细胞培养及动物体内细胞移植方面的研究。然而,该治疗方法的研究尚处于初步阶段。关于其细胞鉴别特性、理想培养条件及高质量临床研究方面的报道仍相当缺乏。总而言之,尽管研究有待深化,滑膜间充质干细胞仍不失为一种未来修复软骨损伤领域有前景的细胞资源。
中图分类号:
陈 康,曾意荣,樊粤光,曾建春,李 杰,李飞龙,范 帅. 滑膜间充质干细胞修复软骨损伤:具有临床转化机制的话题[J]. 中国组织工程研究, 2014, 18(2): 307-313.
Chen Kang, Zeng Yi-rong, Fan Yue-guang, Zeng Jian-chun, Li Jie, Li Fei-long, Fan Shuai. Synovial mesenchymal stem cells-based therapy for cartilage repair An issue concerning clinical transformation[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(2): 307-313.
Differentiated properties of SMSCs compared with other MSCs
with an increasing number of animal studies in vivo in these few years, though clinical studies are still largely lacking. Currently it can help to repair cartilage defects to a limited extent in vivo. Koga et al [16]created full-thickness osteochondral defects in the knees of adult rabbits, which were filled with labeled SMSCs and covered with periosteum. It was demonstrated that SMSCs were able to form a cartilage matrix with an abundance of sulfated GAGs and type II collagen, and regionally specified in accordance to local microenvironment. Up to 24 weeks, integration with native tissue was noted, while the thickness of the repair tissue decreased. Nimura et al[6] reported a study using SMSCs transplanted into full-thickness cartilage defects of the knees in rabbits, with a comparison between the autologous serum cultured group and the FBS group. The effect revealed that chondrogenic potential of rabbit SMSCs in vivo was similar in both two groups. Pei et al [35] implanted rabbit SMSCs after 1-month incubation into the knees to repair the full-thickness osteochondral defects, along compared with the scaffold group (fibrin glue-saturated PGA) and the empty group (untreated). Six months after implantation, cartilage defects were full of smooth hyaline-like cartilage with no detectable macrophages and type I collagen but a high expression of GAG and type II collagen, which were integrated with the surrounding native cartilage as well, compared with the scaffold and empty groups respectively resurfaced with fibrous-like and fibrocartilage tissue. Zhang et al [30] implanted rabbit SMSCs encapsulated in type I collagen scaffold with cell-derived factor-1 into the rabbit to repair partial-thickness defects. Good results were shown that in situ self-repair of partial-thickness defects enhanced 6 weeks post-injury. It also brought out the conclusion that in partial-thickness defects, the inferior self-repair capacity is partially owing to the non-permissive microenvironment. Ando et al [36] implanted the in vitro generated scaffold-free tissue-engineered construct derived from porcine SMSCs into the cartilage defects in the medial femoral condyle of 4-month-old pigs. After 6 months, the tissue-engineered construct repaired tissue showed mechanical properties similar to the normal porcine cartilage, as well as secure biological integration to the native cartilage. Nakamura et al[37] injected porcine SMSCs into the knees with artificial cartilage defects in pigs, compared with the non-treated control knees. Quantification analyses for arthroscopy, histology and MRI all revealed a better outcome in the SMSC-treated knees than in the non-treated control knees.
[1] Becerra J, Andrades JA, Guerado E, et al. Articular cartilage: structure and regeneration. Tissue Eng Part B Rev. 2010;16(6):617-627. [2] De Bari C, Dell'Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44(8):1928-1942. [3] Yoshimura H, Muneta T, Nimura A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007;327(3):449-462.[4] Jo CH, Ahn HJ, Kim HJ, et al. Surface characterization and chondrogenic differentiation of mesenchymal stromal cells derived from synovium. Cytotherapy. 2007;9(4):316-327.[5] Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 2005;52(8):2521-2529.[6] Nimura A, Muneta T, Koga H, et al. Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum. 2008;58(2):501-510.[7] Djouad F, Bony C, Häupl T, et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther. 2005;7(6): R1304-1315.[8] Nagase T, Muneta T, Ju YJ, et al. Analysis of the chondrogenic potential of human synovial stem cells according to harvest site and culture parameters in knees with medial compartment osteoarthritis. Arthritis Rheum. 2008;58(5):1389-1398.[9] Meng J, Adkin CF, Arechavala-Gomeza V, et al. The contribution of human synovial stem cells to skeletal muscle regeneration. Neuromuscul Disord. 2010;20(1):6-15. [10] Van Landuyt KB, Jones EA, McGonagle D, et al. Flow cytometric characterization of freshly isolated and culture expanded human synovial cell populations in patients with chronic arthritis. Arthritis Res Ther. 2010;12(1):R15.[11] Hermida-Gómez T, Fuentes-Boquete I, Gimeno-Longas MJ, et al. Quantification of cells expressing mesenchymal stem cell markers in healthy and osteoarthritic synovial membranes. J Rheumatol. 2011;38(2):339-349.[12] De Bari C, Dell'Accio F, Karystinou A, et al. A biomarker-based mathematical model to predict bone-forming potency of human synovial and periosteal mesenchymal stem cells. Arthritis Rheum. 2008;58(1): 240-250.[13] Arufe MC, De la Fuente A, Fuentes I, et al. Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes. J Cell Biochem. 2010;111(4): 834-845.[14] Shirasawa S, Sekiya I, Sakaguchi Y, et al. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006;97(1):84-97. [15] Koga H, Shimaya M, Muneta T, et al. Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Res Ther. 2008;10(4):R84.[16] Koga H, Muneta T, Ju YJ, et al. Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells. 2007;25(3):689-696.[17] Fan J, Gong Y, Ren L, et al. In vitro engineered cartilage using synovium-derived mesenchymal stem cells with injectable gellan hydrogels. Acta Biomater. 2010;6(3): 1178-1185.[18] Rui YF, Du L, Wang Y, et al. Bone morphogenetic protein 2 promotes transforming growth factor β3-induced chondrogenesis of human osteoarthritic synovium-derived stem cells. Chin Med J (Engl). 2010;123(21):3040-3048.[19] Shintani N, Siebenrock KA, Hunziker EB. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy. PLoS One. 2013;8(1): e53086. [20] Kim JH, Lee MC, Seong SC, et al. Enhanced proliferation and chondrogenic differentiation of human synovium-derived stem cells expanded with basic fibroblast growth factor. Tissue Eng Part A. 2011;17(7-8):991-1002.[21] Xu T, Wu M, Feng J, et al. RhoA/Rho kinase signaling regulates transforming growth factor-β1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway. Int J Mol Med. 2012;30(5):1119-1125. [22] Shimaya M, Muneta T, Ichinose S, et al. Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins. Osteoarthritis Cartilage. 2010;18(10):1300-1309.[23] Shimomura K, Ando W, Tateishi K, et al. The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials. 2010;31(31):8004-8011.[24] Shintani N, Hunziker EB. Differential effects of dexamethasone on the chondrogenesis of mesenchymal stromal cells: influence of microenvironment, tissue origin and growth factor. Eur Cell Mater. 2011;22:302-320.[25] Bertram KL, Krawetz RJ. Osmolarity regulates chondrogenic differentiation potential of synovial fluid derived mesenchymal progenitor cells. Biochem Biophys Res Commun. 2012;422(3):455-461.[26] Suzuki S, Muneta T, Tsuji K, et al. Properties and usefulness of aggregates of synovial mesenchymal stem cells as a source for cartilage regeneration. Arthritis Res Ther. 2012;14(3):R136.[27] Nimura A, Muneta T, Otabe K, et al. Analysis of human synovial and bone marrow mesenchymal stem cells in relation to heat-inactivation of autologous and fetal bovine serums. BMC Musculoskelet Disord. 2010;11:208.[28] Fan J, Ren L, Liang R, et al. Chondrogenesis of synovium-derived mesenchymal stem cells in photopolymerizing hydrogel scaffolds. J Biomater Sci Polym Ed. 2010;21(12):1653-1667.[29] Qi J, Chen A, You H, et al. Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds. Biomed Mater. 2011; 6(1):015006.[30] Zhang W, Chen J, Tao J, et al. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials. 2013;34(3):713-723.[31] Sekiya I, Ojima M, Suzuki S, et al. Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J Orthop Res. 2012;30(6):943-949.[32] Jones E, Churchman SM, English A, et al. Mesenchymal stem cells in rheumatoid synovium: enumeration and functional assessment in relation to synovial inflammation level. Ann Rheum Dis. 2010;69(2):450-457.[33] Morito T, Muneta T, Hara K, et al. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology (Oxford). 2008;47(8):1137-1143.[34] Ando W, Heard BJ, Chung M, et al. Ovine synovial membrane-derived mesenchymal progenitor cells retain the phenotype of the original tissue that was exposed to in-vivo inflammation: evidence for a suppressed chondrogenic differentiation potential of the cells. Inflamm Res. 2012; 61(6):599-608.[35] Pei M, He F, Boyce BM, et al. Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis Cartilage. 2009;17(6):714-722.[36] Ando W, Tateishi K, Hart DA, et al. Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials. 2007;28(36):5462-5470.[37] Nakamura T, Sekiya I, Muneta T, et al. Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy. 2012;14(3):327-338 |
[1] | 万 然, 史 旭, 刘京松, 王岩松. 间充质干细胞分泌组治疗脊髓损伤的研究进展[J]. 中国组织工程研究, 2021, 25(7): 1088-1095. |
[2] | 邓桢翰, 黄 勇, 肖璐璐, 陈昱霖, 朱伟民, 陆 伟, 王大平. 骨形态发生蛋白在关节软骨再生过程中的作用与应用[J]. 中国组织工程研究, 2021, 25(5): 798-806. |
[3] | 张振坤, 李 喆, 李 亚, 王莹莹, 王亚苹, 周馨魁, 马珊珊, 关方霞. 海藻酸盐基水凝胶/敷料在创面愈合中的应用:持续、动态与顺序释放[J]. 中国组织工程研究, 2021, 25(4): 638-643. |
[4] | 黄茂茂, 胡 月, 王彬川, 张 驰, 谢羽婕, 王剑雄, 汪 丽, 胥方元. 缺血性脑卒中康复近10年国际文献计量学及可视化分析[J]. 中国组织工程研究, 2021, 25(23): 3725-3733. |
[5] | 孙维兴, 赵永超, 赵然尊 . 间充质干细胞移植治疗心肌梗死:问题、症结及新突破[J]. 中国组织工程研究, 2021, 25(19): 3103-3109. |
[6] | 陈 晓, 郭 智, 陈丽娜, 刘玄勇, 张弋慧智, 李旭绵, 王月乔, 韦丽娅, 谢 晶, 蔺 莉. 自体外周血造血干细胞动员采集的影响因素[J]. 中国组织工程研究, 2021, 25(19): 2958-2962. |
[7] | 张剑慧, 马贺然, 谭 毅, 王芝辉. 人脂肪间充质干细胞无支架三维凝胶修复猪膝关节损伤[J]. 中国组织工程研究, 2021, 25(19): 2969-2975. |
[8] | 杨腾云, 李彦林, 刘德健, 王国梁. 外周血源性间充质干细胞修复骨关节炎软骨损伤的应用前景与问题[J]. 中国组织工程研究, 2021, 25(19): 3071-3076. |
[9] | 付力伟, 杨 振, 李 浩, 高仓健, 眭 翔, 刘舒云, 郭全义 . 亲和肽在软骨组织工程中应用的新策略和问题[J]. 中国组织工程研究, 2021, 25(16): 2569-2574. |
[10] | 刘 露, 张霓霓, 代 敏, 黄桂林. 干细胞与生物材料修复放射性涎腺组织损伤的病理改变及功能重建[J]. 中国组织工程研究, 2021, 25(13): 2103-2107. |
[11] | 钱楠楠, 张 潜, 杨 睿, 敖 俊, 章 涛. 间充质干细胞治疗脊髓损伤:细胞治疗及联合新药和生物材料[J]. 中国组织工程研究, 2021, 25(13): 2114-2120. |
[12] | 曹琳琳, 丁凯阳, 宋 浩, 吴国林, 胡茂贵, 范丹丹, 周晨阳, 王翠翠, 封媛媛. 自体造血干细胞移植治疗恶性淋巴瘤的疗效及影响因素[J]. 中国组织工程研究, 2021, 25(13): 1993-1998. |
[13] | 张文坚, 马灵甫, 王志敏, 莫文健, 周睿卿. 异基因造血干细胞移植患者的四肢肌肉量及影响因素调查[J]. 中国组织工程研究, 2021, 25(13): 1999-2004. |
[14] | 赵春涛, 卿明松, 余浪波, 彭笳宸. 运动学对线和机械力学对线指导全膝关节置换效果的Meta分析[J]. 中国组织工程研究, 2020, 24(9): 1435-1442. |
[15] | 涂鹏程, 郭 杨, 马 勇, 潘娅岚, 郑苏阳, 王礼宁, 吴承杰, 过俊杰. 威灵仙提取物可促进体外牵张应力环境下软骨细胞表型的维持[J]. 中国组织工程研究, 2020, 24(8): 1182-1187. |
1已知信息:
由于手术和治疗方法的改进,软骨损伤的治疗有了很大的进步。但现有软骨修复的治疗手段费用昂贵,治疗周期长,技术要求高,临床效果亦未见理想。滑膜间充质干细胞修复损伤软骨的方法,有效克服了上述相关问题,已成为组织工程软骨再生领域的研究热点。可期成为未来治疗软骨损伤的有效新方法。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||