中国组织工程研究 ›› 2017, Vol. 21 ›› Issue (11): 1748-1752.doi: 10.3969/j.issn.2095-4344.2017.11.019

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

有限元分析:椎间盘退变对颈椎生物力学的影响

李 斌1,赵文志2,陈秉智3   

  1. 1大连市友谊医院骨外科,辽宁省大连市 116001;2大连医科大学附属二院骨外科,辽宁省大连市 116027;3大连交通大学交通运输工程学院,辽宁省大连市 116028
  • 出版日期:2017-04-18 发布日期:2017-05-06
  • 作者简介:李斌,男,1981年生,辽宁省阜新市,汉族,大连交通大学在读博士,主治医师,从事骨科学、生物医学工程、生物力学的研究。
  • 基金资助:

    国家自然科学基金(31270999)

Biomechanical effects of intervertebral disc degeneration on the cervical spine: a finite element analysis

Li Bin1, Zhao Wen-zhi2, Chen Bing-zhi3   

  1. 1Department of Orthopedics, Dalian Friendship Hospital, Dalian 116001, Liaoning Province, China; 2Department of Orthopedics, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning Province, China; 3Institute of Traffic and Transportation Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning Province, China
  • Online:2017-04-18 Published:2017-05-06
  • About author:Li Bin, Studying for doctorate, Attending physician, Department of Orthopedics, Dalian Friendship Hospital, Dalian 116001, Liaoning Province, China
  • Supported by:

     the National Natural Science Foundation of China, No. 31270999

摘要:

文章快速阅读:

 
 

 

文题释义:
接触单元:小关节面之间运动较为复杂,当间隙小于一定的数值时会发生相互作用,并且是多个方向的相对滑动或磨擦为此有人将关节面定义为接触单元。在ANSYS中可以采用3种不同的单元来模拟接触:面-面接触单元;点-面接触单元;点-点接触单元。
有限元法:基本原理是把一个由无限个质点和有无限个自由度构成的连续体划分为有限个小单元体组成的集合体,用离散化的有限单元模型代替原有物体。其可对形状、结构、材料和载荷情况极其复杂的构件进行应力、应变分析。
 
摘要
背景:颈椎的生物力学表现较为复杂,选择合适的生物力学模型和研究方法是探求颈椎损伤的诊断评估机制和治疗预后判断的重要途径。
目的:椎间盘退变后颈椎生物力学变化及对稳定性的影响。
方法:①以一健康男性志愿者的颈椎为研究对象,利用CT扫描成像、CAD造型软件Solid-Works2015、HyperMesh软件、ANSYS11.0软件,建立全颈椎正常有限元模型,椎间盘高度降低合并严重退变有限元模型,分析其对颈椎的生物力学指标运动范围和椎间盘应力的影响。
结果与结论:①整个模型共有97 705个节点和372 896个单元组成,远远超过了以前所建立的模型的单元数与节点数,并建立了韧带、关节囊等组织结构,而且在关节突关节等处采用了面-面接触单元,结构完整,空间结构的测量准确度高;②颈椎间盘退变时颈椎的运动范围及受力与正常颈椎节段相比均增加,并在统计学上有差异(P < 0.05);③椎间盘退变引起椎间盘及运动节段的角度增加,椎体边缘可形成骨赘;椎间盘退变引起颈椎不稳,同时不稳又加重椎间盘退变。

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程
ORCID: 0000-0002-3946-4326(李斌)

关键词: 骨科植入物, 脊柱植入物, 颈椎, 生物力学, 有限元, 椎间盘高度, 退变, 国家自然科学基金

Abstract:

BACKGROUND: The biomechanics of cervical spine is complicated. It is an important way to select the appropriate biomechanical model and research method so as to explore the diagnosis and evaluation mechanism of cervical spine injury and prognosis judgement.

OBJECTIVE: To discuss the alternation of cervical biomechanics after the degeneration of cervical disc and the influence of degeneration on cervical stability.
METHODS: (1) A three-dimensional finite element model of cervical spine was established from the CT scan images of cervical spine of a healthy male volunteer, Solid-Works2015, HyperMesh and ANSYS11.0. We created a cervical three-dimensional finite element model. To simulate the degenerative disc by modified the mechanical characters and height of the disc model, we observed the biomechanics of the impact on the cervical spine (the range and the stress on intervertabral disc).
RESULTS AND CONCLUSION: (1) The entire model with a total of 97 705 nodes and 372 896 elements. Ligament and joint capsule were also constructed. Face to face contact element was used in the facet joint, with complete structure and high accuracy of measurement of spatial structure. (2) The range of motion of cervical spine increased during degeneration compared with normal cervical segments (P < 0.05). (3) Intervertebral disc degeneration caused angle increase at disc and motion segment. Osteophyte formed on vertebral edge. Intervertebral disc degeneration caused cervical instability. Simultaneously, instability increased the disc degeneration. 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程

Key words: Cervical Vertebrae, Biomechanics, Finite Element Analysis, Tissue Engineering

中图分类号: