中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (48): 7169-7174.doi: 10.3969/j.issn.2095-4344.2016.48.004

• 人工假体 artificial prosthesis • 上一篇    下一篇

人工寰齿关节结构优化设计及仿真分析

熊 胜1,陈希良1,王云峰1,胡 勇2   

  1. 1中国科学院宁波材料技术与工程研究所,浙江省宁波市 315201;2宁波市第六医院,浙江省宁波市 315000
  • 修回日期:2016-09-10 出版日期:2016-11-25 发布日期:2016-11-25
  • 通讯作者: 陈希良,博士,研究员,博士生导师。中国科学院宁波材料技术与工程研究所,浙江省宁波市 315201
  • 作者简介:熊胜,男,1991年生,汉族,湖北省人,硕士。

Optimization design and simulation analysis of artificial atlanto-odontoid joint structure

Xiong Sheng1, Chen Xi-liang1, Wang Yun-feng1, Hu Yong2   

  1. 1Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang Province, China; 2Ningbo Sixth Hospital, Ningbo 315000, Zhejiang Province, China
  • Revised:2016-09-10 Online:2016-11-25 Published:2016-11-25
  • Contact: Chen Xi-liang, M.D., Researcher, Doctoral supervisor, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang Province, China
  • About author:Xiong Sheng, Master, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang Province, China

摘要:

文章快速阅读

 
 
文题释义
分析静力学:是指以一般质点系为力学模型,以作用在系统上有功力的功或有势力为基础,应用数学分析方法得出平衡的普遍规律。
寰枢关节:是第一颈椎寰椎和第二颈椎枢椎之间连结的总称,包括3个独立的关节,即2个寰枢外侧关节和1个寰枢正中关节。
 
摘要
背景:有研究表明传统的各种寰枢关节模型具有良好的生物力学特性,然而不能完全满足人体的要求。基于前人研究的基础,拟通过对寰枢椎关节的要求进行分析,探讨出一种不仅能预防寰枢关节不稳,而且能使枢椎部件具有一定的灵活性的结构,使之更满足人体的需要。
目的:利用有限元法分析颅颈交界处寰枢椎外侧关节受扭矩后变化,利用静力学分析探讨寰齿关节模型的三维运动力学性能和疲劳寿命以及安全系数。
方法:利用三维造型和有限元软件建立寰齿关节三维有限元模型,对优化后的结构在静力学分析里面进行疲劳分析,围绕模型中心轴施加0.5 N•m的转矩,通过对仿真分析的结果进行分析,从而评估优化后的寰齿关节模型的性能和寿命。
结果与结论:传统的寰齿关节模型是通过销钉固定在体内,枢椎不能转动且外形有缺陷,优化后的结构不仅能使寰齿关节保持良好的稳定性又能使其具有关节运动功能,限位块的添加使其有一定的转动角度且不至于超出限制的旋转角度。由于实际要求,应考虑到操作方便、安置牢固、较少甚至消除副损伤,寰齿关节应选用钛合金材质,各部分零件尺寸的选取都需要达到实际要求。结果说明,优化后的寰齿关节模型实现了创新性和实用性的要求,通过实验证明在机械学上是可行的,优化后的结构各项指数均达到要求。

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程

ORCID:
0000-0003-3228-686X(熊胜)

关键词: 骨科植入物, 数字化骨科, 寰齿关节, 有限元分析, 结构优化, 静力学分析, 限位块, 旋转轴套, 疲劳分析, 钛合金, 旋转角度, 寿命分析

Abstract:

BACKGROUND: Studies have shown that traditional models of atlanto-axial joints have good biomechanical properties, but they cannot completely meet the requirements of the human body. Based on the basis of predecessors’ research, this article will explore a kind of atlanto-axial joint which can not only prevent its instability but also make the structure of axis parts a certain flexibility to make it meet the needs of the human body through the analysis of the requirement of atlanto-axial vertebral joints.

OBJECTIVE: To analyze the torque change at the junction of cranial cervical vertebra lateral atlanto-axial joint by using finite element analysis, and discuss three-dimensional motion mechanical properties and fatigue life and safety factor of the atlanto-axial vertebral models using statics analysis.
METHODS: Fatigue analysis was conducted in the static analysis for the optimized structure in the three-dimensional atlanto-axial vertebral models using finite element analysis. Torque of 0.5 N•m was put on the fixed plate. The performance and life span of the optimized model were evaluated by analyzing the results of simulation analysis.
RESULTS AND CONCLUSION: The traditional model of the atlanto-odontoid joint is fixed by a pin in the body. The axis cannot rotate and the appearance is defective. The optimized artificial atlanto-odontoid joint can rebuild the good stability of atlanto-axial joints and can retain its movement function. The improved structure not only has a certain rotating angle, but also can limit the rotating angle of the model in a certain torque by the limit block. Because of the actual requirements, in order to lay solid, easy to operate, keep the motor functioning and avoid injury, atlanto-odontoid joint should use titanium alloy material. The selection of parameters has certain requirements. These results suggested that the optimized artificial atlanto-odontoid joint has met the commands of creativity and utility, which has feasibility in mechanics. All the parameters meet the requirements in the optimized structure.

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程

Key words: Tissue Engineering, Atlanto-Axial Joint, Finite Element Analysis, Fatigue

中图分类号: