[1] Soucacos PN, Johnson EO, Babis G, et al. An update on recent advances in bone regeneration. Injury. 2008;39 Suppl 2:S1-4. [2] Lomas R, Chandrasekar A, Board TN, et al. Bone allograft in the U.K.:perceptions and realities. Hip Int. 2013;23(5): 427-433.[3] Ghanaati S, Barbeck M, Booms P, et al. Potential lack of “standardized” processing techniques for production of allogeneic and xenogeneic bone blocks for application in humans. Acta Biomater. 2014;10(8):3557-3562.[4] Rafael RD, Felipe PS, Erick RS, et al. Corticocancellous fresh-frozen allograft bone blocks for augmenting atrophied posterior mandibles in humans. Clin Oral Implants Res. 2016; 27(1):39-46.[5] Watanabe Y, Harada N, Sato K, et al. Stem cell therapy: is there a future for reconstruction of large bone defects? Injury. 2016;47 Suppl 1:S47-51.[6] Mark R, Ehsan Z, Malliga R, et al. Osteogenic differentiation of mesenchymal stem cells on a poly (octanediol citrate)/ bioglass composite scaffold in vitro. Mater Design. 2016;(109): 434-442.[7] Rahman RA, Sukri NM, Nazir NM, et al. The potential of 3-dimensional construct engineered from poly (lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering. Tissue Cell. 2015;47(4):420-430.[8] Khojasteh A, Sadeghi N, et al. Application of buccal fat pad-derived stem cells in combination with autogenous iliac bone graft in the treatment of maxillomandibular atrophy: a preliminary human study. Int J Oral Maxillofac Surg. 2016;45(7): 864-871.[9] Ozcan G, Ozpolat B, Coleman RL, et al. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev. 2015;87:108-119.[10] Ghadakzadeh S, Mekhail M, Aoude A, et al. Small players ruling the hard game: sirna in bone regeneration. J Bone Miner Res. 2016;31(7):1481.[11] Betz VM, Rosin T, Manthey S, et al. An expedited approach for sustained delivery of bone morphogenetic protein-7 to bone defects using gene activated fragments of subcutaneous fat. J Gene Med. 2016;18(8):199-207.[12] Schmidt-bleek K, Willie BM, Schwabe P, et al. BMPs in bone regeneration: less is more effective, a paradigm-shift. Cytokine Growth Factor Rev. 2016;27:141-148. [13] 朱德志.重组人骨形态发生蛋白-2结合纳米晶胶原基骨材料治疗腰椎不稳症的临床效果及安全性评价[J].中国综合临床,2016, 4(32): 358-361.[14] Schneppendahl J, Grassmann JP, Jungbluth P, et al. Synergistic effects of HBO and PRP improve bone regeneration with autologous bone grafting. Injury. 2016; 47(12): 2718-2725.[15] Schneppendahl J, Jungbluth P, Logters TT, et al. Treatment of a diaphyseal long-bone defect with autologous bone grafts and platelet-rich plasma in a rabbit model. Vet Comp Orthop Traumatol. 2015;28(3):164-71.[16] Park HC, Kim SG, Oh JS, et al. Early bone formation at a femur defect using cgf and prf grafts in adult dogs: a compatative study. Implant Dent. 2016;25(3):387-393.[17] 杨宝凯,张旭斌.天然牡蛎壳纳米体复合型骨材料修复骨缺损[J].中国组织工程研究,2015,19(21):3297-3301.[18] 黄谢山,刘明,王江.墨鱼骨转化羟基磷灰石制备及细胞相容性[J].中国组织工程研究,2014,18(16):2532-2537.[19] Mousumi S, Young-Ki M, Byong-Taek L, et al. Collagen- hydroxyapatite coated unprocessed cuttlefish bone as a bone substitute. Mater Lett. 2016;181:156-160.[20] Sumio L. Helical microtubules of graphitic carbon. Nature. 1991; 354(6348):56-58.[21] 姚梦竹,盛晓霞,林军,等.碳纳米管在骨组织工程支架中的研究进展[J].浙江大学学报,2016,45(2):161-169.[22] Tanaka M, Sato Y, Zhang M, et al. In Vitro and In Vivo Evaluation of a Three-Dimensional Porous Multi-Walled Carbon Nanotube Scaffold for Bone Regeneration. Nanomaterials. 2017;7(2):E46.[23] Tanaka M, Sato Y, Nomura H, et al. A three-dimensional block structure consisting exclusively of carbon nanotubes serving as bone regeneration scaffold and as bone defect filler. PLoS One. 2017;12(2):e0172601. [24] Hench LL. The story of bioglass. J Mater Sci Mater Med. 2006; 17(11):967-978. [25] Niu Y, Guo L, Liu J, et al. Bioactive and degradable scaffolds of the mesoporous bioglass and poly( L -lactide) composite for bone tissue regeneration. J Mater Chem B. 2015;3(15): 2962-2970.[26] Fernández CA, Martinz CA, Prado MO, et al. Bone Regeneration with Wharton´s Jelly-Bioceramic-Bioglass Composite. Procedia Mate Sci. 2015.[27] Tang Z , Xie Y, Yang F, et al. Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo. PLoS One. 2013;8(6):e66263. [28] 李泳.多孔钛铌合金的表征、生物相容性及在缺损性植骨中的研究[D].长沙:中南大学,2012.[29] de Maat Mp, Verhaar JA, Jahr H, et al. full regeneration of segmental bone defects using porous titanium implants loaded with BMP-2 containing fibrin gels. Eur Cells Mater. 2015;29:141-153. [30] Smith JO, Sengers BG, Aarvold A, et al. Tantalum trabecular metal-addition of human skeletal cells to enhance bone implant interface strength and clinical application. J Tissue Eng Regen Med. 2014;8(4):304-313.[31] Wang Y, Kim HJ, Vunjak-Novakovic G, et al. Stem cellbased tissue engineering with silk biomaterials. Biomaterials. 2006; 27(36):6064-6082.[32] Gamradt SC, Lieberman JR. Bone graft for revision hip arthroplasty: biology and future applications. Clin Orthop Relat Res. 2008;(417):183-194.[33] Mottaghitalab F, Hosseinkhanin H, Shokrgozar MA, et al. Silk as a potential candidate for bone tissue engineering. J Control Release. 2015;(215):112-128.[34] labrese R, Kaplan DL. Silk ionomers for encapsulation and differentiation of human MSCs. Biomaterials. 2012;33(30): 7375-7385.[35] Fini M, Motta A, Torricelli P, et al. The healing of confined critical size cancellous defects in the presence ofsilk fibroin hydrogel. Biomaterials. 2015;26(17):3527-3536.[36] Diab T, Pritchard EM, Uhrig BA, et al. A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects. J Mech Behav Biomed Mater. 2012;11:123-131.[37] Zhang W, Wang X, Wang S, et al. The use of injectable sonicalion-induced silkhydrogel for VEGF l 65 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials. 2011;32(35):9415-9424.[38] Meinel L, Betz O, Fajardo R, et al. Silk based biomaterials to heal critical sized femur defects. Bone. 2016;39(4):922-931.[39] Panas-Perez E, Gatt CJ, Dunn MG. Development of a silk and collagen fiber scaffold for anterior cruciate ligament reconstruction. J Mater Sci Mater Med. 2013;24(1):257-265.[40] Li X, He J, Bian W, et al. A Rovel silk-based artif icial ligament and tricalcium phosphate/polyether ether ketone anchor for anterior cruciate ligament reconstruction -safety and efficacy in a porcine model. Acta Biomater. 2014;10(8):3696-3704.[41] Li X, He J, Bian W, et al. A novel silk-TCP-PEEK construct for anterior cruciate ligament reconstruction: an off-the shelf alernative to a bone-tendon-bone autograft. Biofabrication. 2014;6(1):015010.[42] Boiret N, Rapatel C, Veyrat-Masson R, et al. Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp Hematol. 2005;33(2): 219-225.[43] Salama K, Yamazaki S, Katashima T, et al. Silk-pectin hydrogel with superior mechanical properties, biodegradability, and biocompatibility. Macromol Biosci. 2014;14(6):799-806.[44] 石玲玲,丁真奇,郭林新,等.异种脱蛋白骨管复合不同移植材料修复大段骨缺损的实验研究[J].中国骨与关节损伤杂志,2010, 25(12):1089-1091. |