[1] FENG S, FENG Z, WEI Y, et al. EEF1B2 regulates bone marrow-derived mesenchymal stem cells bone-fat balance via Wnt/β-catenin signaling. Cell Mol Life Sci. 2024;81(1):260.
[2] 王礼宁,朱弈桦,马勇,等.骨质疏松视野下骨脂代谢相关调控网络的研究[J].中国骨质疏松杂志,2023,29(3):437-443.
[3] PAPADOPOULOS KS, PIPERI C, KORKOLOPOULOU P. Clinical Applications of Adipose-Derived Stem Cell (ADSC) Exosomes in Tissue Regeneration. Int J Mol Sci. 2024;25(11):5916.
[4] KANANIVAND M, NOURI F, YOUSEFI MH, et al. Mesenchymal stem cells and their exosomes: a novel approach to skin regeneration via signaling pathways activation. J Mol Histol. 2025;56(2):132.
[5] LI R, LI D, WANG H, et al. Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF. Stem Cell Res Ther. 2022;13(1):149.
[6] WANG T, GUO S, ZHANG Y. Effect of nHA/CS/PLGA delivering adipose stem cell-derived exosomes and bone marrow stem cells on bone healing-in vitro and in vivo studies. Sci Rep. 2024;14(1):27502.
[7] TAN X, XIAO H, YAN A, et al. Effect of Exosomes From Bone Marrow-Derived Mesenchymal Stromal Cells and Adipose-Derived Stromal Cells on Bone-Tendon Healing in a Murine Rotator Cuff Injury Model. Orthop J Sports Med. 2024;12(1):23259671231210304.
[8] 郑苏阳,马勇,郭杨,等.“温肾通络止痛方”治疗原发性骨质疏松症的疗效观察及处方优化[J].辽宁中医杂志,2016,43(10):2098-2100.
[9] WANG L, PAN Y, LIU M, et al. Wen-Shen-Tong-Luo-Zhi-Tong Decoction regulates bone-fat balance in osteoporosis by adipocyte-derived exosomes. Pharm Biol. 2023;61(1):568-580.
[10] 牛园园,张天驰,李沐哲,等.温肾通络止痛方通过AMPK/mTOR信号通路调控自噬对老年性骨质疏松模型小鼠的干预作用[J].中国中西医结合杂志,2024,44(1):84-90.
[11] 曹晨曦,吴天唯,廖鑫,等.基于亲母细胞“印迹模板”外泌体载体水通道的经络运行物质基础探讨[J].中华中医药杂志,2023,38(3): 1045-1049.
[12] 唐幸林子,王志宇,王胜奇,等.基于表观遗传定义的肿瘤外泌体及其中医证本质[J].中华中医药杂志,2023,38(8):3609-3614.
[13] 薛枫,邹吉宇,庞立健,等.“气络失和”病机观与“外泌体分泌异常”在特发性肺纤维化中的相关性探讨[J].实用中医内科杂志,2024,38(6):107-110.
[14] WU P, JIAO F, HUANG H, et al. Morinda officinalis polysaccharide enable suppression of osteoclastic differentiation by exosomes derived from rat mesenchymal stem cells. Pharm Biol. 2022;60(1):1303-1316.
[15] 朱俊清,徐洋,华新振,等.中医药调节外泌体干预疾病的研究进展[J].中草药,2024,55(21):7519-7529.
[16] LI M, NIU Y, ZHANG T, et al. Wen-Shen-Tong-Luo-Zhi-Tong-Decoction inhibits bone loss in senile osteoporosis model mice by promoting testosterone production. J Ethnopharmacol. 2025;338(Pt 2):119033.
[17] LI Y, WANG G, WANG Q, et al. Exosomes Secreted from Adipose-Derived Stem Cells Are a Potential Treatment Agent for Immune-Mediated Alopecia. J Immunol Res. 2022;2022:7471246.
[18] WANG D, LIU Y, DIAO S, et al. Long Non-Coding RNAs Within Macrophage-Derived Exosomes Promote BMSC Osteogenesis in a Bone Fracture Rat Model. Int J Nanomedicine. 2023;18:1063-1083.
[19] 谷成旭,张乃丽,孟永春,等.脂肪间充质干细胞外泌体可减轻过氧化氢诱导PC12细胞的凋亡[J].中国组织工程研究,2024,28(19): 2988-2995.
[20] 刘宇,龚森怡,杨丽华,等.间充质干细胞来源外泌体分离、鉴定技术及应用[J].中国组织工程研究,2026,30(1):194-203.
[21] PERTEA M, PERTEA GM, ANTONESCU CM, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290-295.
[22] SUN L, LUO H, BU D, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166.
[23] BURR DB. Fifty years of bisphosphonates: What are their mechanical effects on bone? Bone. 2020;138:115518.
[24] ADAMI G, SAAG KG. Expert Perspective: How, When, and Why to Potentially Stop Antiresorptive Drugs in Osteoporosis. Arthritis Rheumatol. 2025. doi: 10.1002/art.43179.
[25] ZHANG W, HUANG P, LIN J, et al. The Role of Extracellular Vesicles in Osteoporosis: A Scoping Review. Membranes (Basel). 2022;12(3):324.
[26] 吕茹月,顾路路,刘茜,等.外泌体分泌调控机制及在生物医学中的应用前景[J].中国组织工程研究,2026,30(1):184-193.
[27] 张昊,余翔,任辉,等.左归丸调控miR34a对BMSCs成骨分化能力的影响[J].辽宁中医杂志,2018,45(6):1300-1304+1341.
[28] 安宏强.miRNA-19a-5p调控IL-17A在绝经后骨质疏松症中的作用与中药干预机制研究[D].济南:山东中医药大学,2021.
[29] QING Y, HUANG M, CAO Y, et al. Effects of miRNA-342-3p in modulating Hedgehog signaling pathway of human umbilical cord mesenchymal stem cells by down-regulating Sufu. Oral Dis. 2019;25(4):1147-1157.
[30] HUANG M, QING Y, SHI Q, et al. miR-342-3p elevates osteogenic differentiation of umbilical cord mesenchymal stem cells via inhibiting Sufu in vitro. Biochem Biophys Res Commun. 2017;491(3):571-577.
[31] BÖHM AM, DIRCKX N, TOWER RJ, et al. Activation of Skeletal Stem and Progenitor Cells for Bone Regeneration Is Driven by PDGFRβ Signaling. Dev Cell. 2019;51(2):236-254.e12.
[32] PHAM T, NAJY AJ, KIM HC. E3 ligase HUWE1 promotes PDGF D-mediated osteoblastic differentiation of mesenchymal stem cells by effecting polyubiquitination of β-PDGFR. J Biol Chem. 2022;298(6):101981.
[33] TREMPUS CS, PAPAS BN, SIFRE MI, et al. Functional Pdgfra fibroblast heterogeneity in normal and fibrotic mouse lung. JCI Insight. 2023; 8(22):e164380.
[34] YAN Y, YUAN J, LUO X, et al. microRNA-140 Regulates PDGFRα and Is Involved in Adipocyte Differentiation. Front Mol Biosci. 2022;9:907148.
[35] XU S, LIU Y, ZHANG D, et al. PDGF-AA promotes gap junction intercellular communication in chondrocytes via the PI3K/Akt pathway. Connect Tissue Res. 2022;63(5):544-558.
[36] DOHERTY L, YU J, WANG X, et al. A PDGFRβ-PI3K signaling axis mediates periosteal cell activation during fracture healing. PLoS One. 2019;14(10):e0223846.
[37] SUN Z, CAI Y, CHEN Y, et al. Ultrasound-targeted microbubble destruction promotes PDGF-primed bone mesenchymal stem cell transplantation for myocardial protection in acute Myocardial Infarction in rats. J Nanobiotechnology. 2023;21(1):481.
[38] XIANG S, LUO Y, LIU W, et al. Calycosin alleviates ovariectomy-induced osteoporosis by promoting BMSCs autophagy via the PI3K/Akt/mTOR pathway. Naunyn Schmiedebergs Arch Pharmacol. 2025. doi: 10.1007/s00210-025-04009-x.
[39] CASE N, THOMAS J, SEN B, et al. Mechanical regulation of glycogen synthase kinase 3β (GSK3β) in mesenchymal stem cells is dependent on Akt protein serine 473 phosphorylation via mTORC2 protein. J Biol Chem. 2011;286(45):39450-39456. |