[1] DESHPANDE BR, KATZ JN, SOLOMON DH, et al. Number of Persons With Symptomatic Knee Osteoarthritis in the US: Impact of Race and Ethnicity, Age, Sex, and Obesity. Arthritis Care Res (Hoboken). 2016;68(12):1743-1750.
[2] XIE F, KOVIC B, JIN X, et al. Economic and Humanistic Burden of Osteoarthritis: A Systematic Review of Large Sample Studies. Pharmacoeconomics. 2016;34(11): 1087-1100.
[3] LIU M, JIN F, YAO X, et al. Disease burden of osteoarthritis of the knee and hip due to a high body mass index in China and the USA: 1990-2019 findings from the global burden of disease study 2019. BMC Musculoskelet Disord. 2022;23(1):63.
[4] KELLGREN JH, LAWRENCE JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494-502.
[5] OLSSON S, AKBARIAN E, LIND A, et al. Automating classification of osteoarthritis according to Kellgren-Lawrence in the knee using deep learning in an unfiltered adult population. BMC Musculoskelet Disord. 2021;22(1):844.
[6] KÖSE Ö, ACAR B, ÇAY F, et al. Inter- and Intraobserver Reliabilities of Four Different Radiographic Grading Scales of Osteoarthritis of the Knee Joint. J Knee Surg. 2018;31(3):247-253.
[7] TEOH YX, LAI KW, USMAN J, et al. Discovering Knee Osteoarthritis Imaging Features for Diagnosis and Prognosis: Review of Manual Imaging Grading and Machine Learning Approaches. J Healthc Eng. 2022;2022:4138666.
[8] 李松, 史涛, 井方科. 改进YOLOv8的道路损伤检测算法[J]. 计算机工程与应用,2023,59(23):165-174.
[9] REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016:779-788.
[10] LIU X, PENG H, ZHENG N, et al. EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023:14420-14430.
[11] CAI H, LI J, HU M, et al. EfficientViT: Lightweight Multi-Scale Attention for High-Resolution Dense Prediction, 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023:17256-17267.
[12] WU TH, WANG TW. Real-Time Vehicle and Distance Detection Based on Improved Yolo v5 Network. 2021 3rd World Symposium on Artificial Intelligence (WSAI), Guangzhou, China, 2021:24-28.
[13] JIAO L, ZHANG F, LIU F, et al. A Survey of Deep Learning-Based Object Detection. IEEE Access. 2019;7:128837-128868.
[14] CAI W, NING X, ZHOU G, et al. A Novel Hyperspectral Image Classification Model Using Bole Convolution With Three-Direction Attention Mechanism: Small Sample and Unbalanced Learning. IEEE Trans Geosci Rem Sens. 2023;61:1-17.
[15] LI J, LI B, JIANG Y, et al. MrFDDGAN: Multireceptive Field Feature Transfer and Dual Discriminator-Driven Generative Adversarial Network for Infrared and Color Visible Image Fusion. IEEE Trans Instrum Meas. 2023;72:1-28.
[16] KANG J, TARIQ S, OH H, et al. A Survey of Deep Learning-Based Object Detection Methods and Datasets for Overhead Imagery. IEEE Access. 2022;10:20118-20134.
[17] ABDULGHANI AM, ABDULGHANI MM, WALTERS WL, et al. Data Augmentation with Noise and Blur to Enhance the Performance of YOLO7 Object Detection Algorithm. 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE), Las Vegas, NV, USA, 2023:180-185.
[18] RAGAB MG. A Comprehensive Systematic Review of YOLO for Medical Object Detection (2018 to 2023). IEEE Access. 2024;12:57815-57836.
[19] Romero-González JTC. A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas. Mach Learn Knowl Extra. 2023;(5):1680-1716.
[20] VARGHESE R, SAMBATH M. YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness, 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), Chennai, India, 2024:1-6.
[21] Liu X, Peng H, Zheng N, et al. EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023:14420-14430.
[22] FU R, CUI S, FENG X. Mixed Global and Local Attention Alleviates Domain Shift Between Terahertz Image Datasets. 2024 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Bali, Indonesia, 2024:1-5.
[23] LUO G, ZHOU Y, JI R, et al. Cascade Grouped Attention Network for Referring Expression Segmentation. New York, NY, USA: ACM. 2020.
[24] 冯晓晴, 蔡道章,余星磊,等.基于GBD大数据中国膝骨关节炎疾病负担现状与趋势分析[J].现代预防医学,2022,49(10):1753-1760.
[25] Tiulpin A, Melekhov I, Saarakkala S. KNEEL: Knee Anatomical Landmark Localization Using Hourglass Networks. in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). 2019.
[26] LEUNG K, ZHANG B, TAN J, et al. Prediction of Total Knee Replacement and Diagnosis of Osteoarthritis by Using Deep Learning on Knee Radiographs: Data from the Osteoarthritis Initiative. Radiology. 2020;296(3):584-593.
[27] PIERSON E, CUTLER DM, LESKOVEC J, et al. An algorithmic approach to reducing unexplained pain disparities in underserved populations. Nat Med. 2021;27(1): 136-140.
[28] GUAN B, LIU F, MIZAIAN AH, et al. Deep learning approach to predict pain progression in knee osteoarthritis. Skeletal Radiol. 2022;51(2):363-373.
[29] CHEUNG JC, TAM AY, CHAN LC, et al. Superiority of Multiple-Joint Space Width over Minimum-Joint Space Width Approach in the Machine Learning for Radiographic Severity and Knee Osteoarthritis Progression. Biology (Basel). 2021;10(11):1107.
[30] TAN JS, TIPPAYA S, BINNIE T, et al. Predicting Knee Joint Kinematics from Wearable Sensor Data in People with Knee Osteoarthritis and Clinical Considerations for Future Machine Learning Models. Sensors (Basel). 2022;22(2):446.
[31] ABDULLAH SS, RAJASEKARAN MP. Rajasekaran. Automatic detection and classification of knee osteoarthritis using deep learning approach. Radiol Med. 2022;127(4):398-406.
[32] BAYRAMOGLU N, ENGLUND M, HAUGEN IK, et al. Deep Learning for Predicting Progression of Patellofemoral Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data, and Symptomatic Assessments. Methods Inf Med. 2024; 63(1-02):1-10.
[33] HILL BG, BYRUM T, ZHOU A, et al. An Algorithmic Approach to Understanding Osteoarthritic Knee Pain. JB JS Open Access. 2023;8(4):e23.00039.
[34] 王昕, 刘爽, 周长才, 基于深度学习和磁共振图像的膝骨关节炎分类[J]. 长春工业大学学报,2023,44(1):45-51.
[35] 庾广文,谢俊杰,梁嘉健,等.深度学习对膝骨关节炎MRI图像智能分割和测量分析的作用及意义[J]. 中国组织工程研究,2024,33(33):5382-5387.
[36] 马明昌, 李永杰,徐国胜,等.膝骨关节炎X线辅助诊断模型建立的临床应用初探[J]. 中华骨与关节外科杂志,2023,16(2):152-158.
[37] 王佳妮, LEUNG K, ZHANG B, 等. 通过对膝关节X线摄影影像深度学习预测膝关节骨性关节炎的诊断和全膝关节置换:来自膝关节骨性关节炎初始数据[J].国际医学放射学杂志,2020,43(6):734.
[38] 杨丽, 王欢,王婷婷, 等. 基于深度学习算法从X线图像识别手关节炎的诊断研究[J]. 现代医学,2024,52(7):1043-1049.
[39] 许超,王云健, 刘洋,等. 基于改进Swin Transformer的膝骨关节炎X光影像自动诊断[J].电子测量技术,2024,47(19):155-163.
[40] 高瑞婷, 林强, 满正行,等. 基于深度学习的SPECT图像关节炎病灶分割[J]. 西北民族大学学报(自然科学版),2021,42(1):22-30,37.
[41] 姜斌. X线、MRI影像对膝骨关节炎的诊断价值分析[J]. 航空航天医学杂志, 2020,31(11):1338-1339. |