[1] BOER CG, HATZIKOTOULAS K, SOUTHAM L, et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell. 2021;184(18):4784-4818.e17.
[2] LI D, LI S, CHEN Q, et al. The Prevalence of Symptomatic Knee Osteoarthritis in Relation to Age, Sex, Area, Region, and Body Mass Index in China: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2020;7:304.
[3] ØIESTAD BE, JUHL CB, CULVENOR AG, et al. Knee extensor muscle weakness is a risk factor for the development of knee osteoarthritis: an updated systematic review and meta-analysis including 46 819 men and women. Br J Sports Med. 2022;56(6):349-355.
[4] HUNTER DJ, SCHOFIELD D, CALLANDER E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol. 2014;10: 437-441.
[5] LV Z, YANG YX, LI J, et al. Molecular Classification of Knee Osteoarthritis. Front Cell Dev Biol. 2021;9:725568.
[6] YAO Q, WU X, TAO C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023; 8(1):56.
[7] ALLEN KD, THOMA LM, GOLIGHTLY YM. Epidemiology of osteoarthritis. Osteoarthritis Cartilage. 2022;30(2):184-195.
[8] JIANG W, CHEN H, LIN Y, et al. Mechanical stress abnormalities promote chondrocyte senescence - The pathogenesis of knee osteoarthritis. Biomed Pharmacother. 2023;167:115552.
[9] PANCHAL NK, PRINCE SABINA E.Non-steroidal anti-inflammatory drugs (NSAIDs): A current insight into its molecular mechanism eliciting organ toxicities. Food Chem Toxicol. 2023;172:113598.
[10] LUO D, ZHU H, LI S, et al. Mesenchymal stem cell-derived exosomes as a promising cell-free therapy for knee osteoarthritis. Front Bioeng Biotechnol. 2024;12:1309946.
[11] LI H, ZHAO T, YUAN Z, et al. Cartilage lacuna-biomimetic hydrogel microspheres endowed with integrated biological signal boost endogenous articular cartilage regeneration. Bioact Mater. 2024;41: 61-82.
[12] DMAHAJAN A, NENGROO MA, DATTA D, et al. Converse modulation of Wnt/β-catenin signaling during expansion and differentiation phases of Infrapatellar fat pad-derived MSCs for improved engineering of hyaline cartilage. Biomaterials. 2023;302:122296.
[13] 朱汉章.针刀医学体系概论[J].中国工程科学,2006,8(7):1-15.
[14] 潘胜莲,王庆来,方芳,等.微针刀治疗早中期膝骨性关节炎疗效观察及对IL-6、TNF-α、NO水平的影响[J].浙江中医杂志,2023, 58(4):281-282.
[15] 孟锋,殷源,王天赋,等.小针刀治疗膝关节骨性关节炎疗效观察及对关节滑液TNF-α、MMPs表达的影响[J].河北医药,2017,39(2): 168-172.
[16] 陈倩,黄小双,杨永晖,等.针刀调节Ca2+抑制膝骨关节炎大鼠软骨细胞凋亡的实验研究[J].中国中医基础医学杂志,2022,28(10): 1616-1623.
[17] 贾小飞,冉丽,马小双,等.针刀调控软骨细胞自噬维持骨关节炎软骨细胞的稳态[J].中国组织工程研究,2024,28(34):5452-5457.
[18] ZHENG X, LIN J, WANG Z, et al. Research of the analgesic effects and central nervous system impact of electroacupuncture therapy in rats with knee osteoarthritis. Heliyon. 2023;10(1):e21825.
[19] WENG Q, CHEN Q, JIANG T, et al. Global burden of early-onset osteoarthritis, 1990-2019: results from the Global Burden of Disease Study 2019. Ann Rheum Dis. 2024;83(7):915-925.
[20] 李树明,郭韧,陈平,等.针刀配合手法与非甾体抗炎药治疗膝骨关节炎疗效比较的系统评价与Meta分析[J].医学综述,2021, 27(22):4553-4559.
[21] 许铛瀚,林煜翔,韦佳,等.调和阴阳针刀治疗膝关节骨关节炎:随机对照试验[J].中国针灸,2022,42(12):1351-1356.
[22] ORTEGA MA, FRAILE-MARTINEZ O, DE LEON-OLIVA D, et al. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci. 2024;20(7):2532-2554.
[23] LEE DY, BAHAR ME, KIM CW, et al. Autophagy in Osteoarthritis: A Double-Edged Sword in Cartilage Aging and Mechanical Stress Response: A Systematic Review. J Clin Med. 2024;13(10):3005.
[24] LV X, ZHAO T, DAI Y, et al. New insights into the interplay between autophagy and cartilage degeneration in osteoarthritis. Front Cell Dev Biol. 2022;10:1089668.
[25] WEN X, FANG G, LI H, et al. CircIRAK3 exerts negative feedback regulation on inflammation by binding to HNRNP U and destabilizing proinflammatory cytokine mRNA in osteoarthritis and chondrogenesis. Int J Biol Macromol. 2024;256(Pt 2):128453.
[26] ARRA M, ABU-AMER Y. Cross-talk of inflammation and chondrocyte intracellular metabolism in osteoarthritis. Osteoarthritis Cartilage. 2023;31(8):1012-1021.
[27] HORVÁTH E, SOLYOM Á, SZÉKELY J, et al. Inflammatory and Metabolic Signaling Interfaces of the Hypertrophic and Senescent Chondrocyte Phenotypes Associated with Osteoarthritis. Int J Mol Sci. 2023;24(22):16468.
[28] KONG P, AHMAD R, ZULKIFLI A, et al. The role of autophagy in mitigating osteoarthritis progression via regulation of chondrocyte apoptosis: A review. Joint Bone Spine. 2024;91(3):105642.
[29] FAZIO A, Di M, BRUNELLO M, et al. The involvement of signaling pathways in the pathogenesis of osteoarthritis: An update. J Orthop Translat. 2024;47:116-124.
[30] LIZ, DAI A, YANG M, et al. p38MAPK Signaling Pathway in Osteoarthritis: Pathological and Therapeutic Aspects. J Inflamm Res.2022;15:723-734.
[31] SHI Y, CHEN J, LI S, et al. Tangeretin suppresses osteoarthritis progression via the Nrf2/NF-κB and MAPK/NF-κB signaling pathways. Phytomedicine. 2022;98:153928.
[32] CHENG J, LI M, BAI R. The Wnt signaling cascade in the pathogenesis of osteoarthritis and related promising treatment strategies. Front Physiol. 2022;13:954454.
[33] TONG W, ZENG Y, CHOW D, et al. Wnt16 attenuates osteoarthritis progression through a PCP/JNK-mTORC1-PTHrP cascade. Ann Rheum Dis. 2019;78(4):551-561.
[34] LEE J. Oxidative stress and the multifaceted roles of ATM in maintaining cellular redox homeostasis. Redox Biol. 2024;75:103269.
[35] HE Y, ZISAN Z, LU Z, et al. Bergapten alleviates osteoarthritis by regulating the ANP32A/ATM signaling pathway. FEBS Open Bio. 2019; 9(6):1144-1152.
[36] QUINTIENS J, DE R, CORNELIS F, et al. Hypoxia and Wnt signaling inversely regulate expression of chondroprotective molecule ANP32A in articular cartilage. Osteoarthritis Cartilage. 2023;31(4):507-518.
[37] MATHIAS B, O’LEARY D, SAUCIER N, et al. MYSM1 attenuates DNA damage signals triggered by physiologic and genotoxic DNA breaks. J Allergy Clin Immunol. 2024;153(4):1113-1124.e7.
[38] LE G, TOUZOT F, ANDRÉ-SCHMUTZ I, et al. An in vivo genetic reversion highlights the crucial role of Myb-Like, SWIRM, and MPN domains 1 (MYSM1) in human hematopoiesis and lymphocyte differentiation. J Allergy Clin Immunol. 2015;136(6):1619-1626.e5.
[39] BAHRAMI E, WITZEL M, RACEK T, et al. Myb-like, SWIRM, and MPN domains 1 (MYSM1) deficiency: Genotoxic stress-associated bone marrow failure and developmental aberrations. J Allergy Clin Immunol. 2017;140(4):1112-1119.
[40] YANG S, NIE T, SHE H, et al. Regulation of TFEB nuclear localization by HSP90AA1 promotes autophagy and longevity. Autophagy. 2023; 19(3):822-838.
[41] GAO D, ZHU B, CAO X, et al. Roles of NIPBL in maintenance of genome stability. Semin Cell Dev Biol. 2019;90:181-186.
[42] 马雯晴,张惠荣,刘辉,等.敲低NIPBL基因调控小鼠骨髓间充质干细胞向软骨的分化[J].中国组织工程研究,2023,27(10): 1477-1483. |