[1] 国家卫生健康委员会.中国卫生健康统计年鉴(2022)[M].北京:中国协和医科大学出版社,2022:148-152
[2] 那生桑.内蒙古蒙药饮片炮制规范(2020年版)[M].呼和浩特:内蒙古人民出版社,2020:456.
[3] 刘岩,裴艳春,王雄耀,等.蒙药蓝刺头对去卵巢大鼠骨组织雌激素受体mRNA表达影响的实验研究[J]. 内蒙古医科大学学报, 2017,39(3):249-253.
[4] 高小明,常虹,丁超华.蒙药蓝刺头对去卵巢大鼠离体骨骨密度及骨最大变形挠度的影响[J].中医药导报,2016,22(24):16-19.
[5] 巴音额古乐,金鸿宾.蒙药蓝刺头对骨折愈合过程中BMP-2及VEGF表达影响[J].中国民族医药杂志,2017,23(6):53-56.
[6] ZHI J, YIN L, ZHANG Z, et al. Network pharmacology-based analysis of Jin-Si-Wei on thetreatment of Alzheimer’s disease. J Ethnopharmacol. 2024;319(Pt 3):117291.
[7] BERGH C, MÖLLER M, EKELUND J, et al. Mortality after Sustaining Skeletal Fractures in Relation to Age. J Clin Med. 2022;11(9):2313.
[8] DUCHAMP DE LAGENESTE O, JULIEN A, ABOU-KHALIL R, et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun. 2018;9(1):773.
[9] SAUL D, KHOSLA S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev. 2022;43(6): 984-1002.
[10] MAHAPATRA C, KUMAR P, PAUL MK, et al. Angiogenic stimulation strategies in bone tissue regeneration. Tissue Cell. 2022;79:101908.
[11] LI J, MA J, FENG Q, et al. Building Osteogenic Microenvironments with a Double-Network Composite Hydrogel for Bone Repair. Research(Wash D C). 2023;6:0021.
[12] 内蒙古植物志编辑委员会.内蒙古植物志[M]. 4卷.呼和浩特:内蒙古人民出版社,1985:69.
[13] 王宇,郝光,张晶.蒙药蓝刺头中微量元素测定与分析[J].内蒙古农业大学学报(自然科学版),2020,41(3):1-3.
[14] 赵磊,姜大成,王丹彧,等.HPLC法测定蒙药蓝刺头中7种有机酸的含量[J].特产研究,2023,45(1):131-135.
[15] 王佳琪,高建萍,杨楠,等.蒙药蓝刺头的化学成分研究Ⅱ[J].中南药学,2018,16(12):1713-1716.
[16] 薛培凤,波拉提•马卡比力,杨雷,等.蒙药蓝刺头的化学成分研究[J].中草药,2017,48(19):3921-3926.
[17] 谢友良,赖小平,易智彪.蒙药蓝刺头研究进展[J].亚太传统医药, 2019,15(12):22-24.
[18] ZULKEFLI N, CHE ZAHARI CNM, SAYUTI NH, et al. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Int J Mol Sci. 2023;24(5):4607.
[19] HUANG HC, CHEN Y, HU J, et al. Quercetin and its derivatives for wound healing in rats/mice: Evidence from animal studies and insight into molecular mechanisms. Int Wound J. 2023;21(2):e14389.
[20] ZHU D, CHEN B, XIANG Z, et al. Apigenin enhances viability of random skin flaps by activating autophagy. Phytother Res. 2021;35(7):3848-3860.
[21] ORTEGA-LLAMAS L, QUIÑONES-VICO MI, GARCÍA-VALDIVIA M, et al. Cytotoxicity and Wound Closure Evaluation in Skin Cell Lines after Treatment with Common Antiseptics for Clinical Use. Cells. 2022; 11(9):1395.
[22] AUERBACH R, LEWIS R, SHINNERS B, et al Angiogenesis assays: a critical overview. Clin Chem. 2003;49(1):32-40.
[23] DUDLEY AC, GRIFFIOEN AW. The modes of angiogenesis: an updated perspective. Angiogenesis. 2023;26(4):477-480.
[24] LASCHKE MW, GU Y, MENGER MD. Replacement in angiogenesis research: Studying mechanisms of blood vessel development by animal-free in vitro, in vivo and in silico approaches. Front Physiol. 2022;13:981161.
[25] NUSSDORFER P, PETROVIČ D, ALIBEGOVIĆ A, et al. The KDR Gene rs2071559 and the VEGF Gene rs6921438 May Be Associated with Diabetic Nephropathy in Caucasians with Type 2 Diabetes Mellitus. Int J Mol Sci. 2024;25(17):9439.
[26] TAO J, MIAO R, LIU G, et al. Spatiotemporal correlation between HIF-1α and bone regeneration. FASEB J. 2022;36(10):e22520.
[27] ZHANG XY, XIA KR, WANG YN, et al. Unraveling the pharmacodynamic substances and possible mechanism of Trichosanthis Pericarpium in the treatment of coronary heart disease based on plasma pharmacochemistry, network pharmacology and experimental validation. J Ethnopharmacol. 2024;325:117869.
[28] HUANG HC, CHEN Y, HU J, et al. Quercetin and its derivatives for wound healing in rats/mice: Evidence from animal studies and insight into molecular mechanisms. Int Wound J. 2023;21(2):e14389.
[29] HE S, CHEN R, PENG L, et al. Differential action of pro-angiogenic and anti-angiogenic components of Danhong injection in ischemic vascular disease or tumor models. Chin Med. 2022;17(1):4.
[30] FAN Y, LI Y, YANG Y, et al. Chlorogenic acid promotes angiogenesis and attenuates apoptosis following cerebral ischaemia-reperfusion injury by regulating the PI3K-Akt signalling. Pharm Biol. 2022;60(1):1646-1655. |