[1] LASKOU F, FUGGLE NR, PATEL HP, et al. Associations of osteoporosis and sarcopenia with frailty and multimorbidity among participants of the Hertfordshire Cohort Study. J Cachexia Sarcopenia Muscle. 2022;13(1): 220-229.
[2] CRUZ-JENTOFT AJ, SAYER AA. Sarcopenia. Lancet. 2019;393(10191):2636-2646.
[3] PAPADOPOULOU SK, TSINTAVIS P, POTSAKI G, et al. Differences in the prevalence of sarcopenia in community-dwelling, nursing home and hospitalized individuals. A systematic review and meta-analysis. J Nutr Health Aging. 2020;24(1):83-90.
[4] YEUNG SSY, REIJNIERSE EM, PHAM VK, et al. Sarcopenia and its association with falls and fractures in older adults: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2019;10(3):485-500.
[5] FOESSL I, DIMAI HP, OBERMAYER-PIETSCH B. Long-term and sequential treatment for osteoporosis. Nat Rev Endocrinol. 2023;19(9): 520-533.
[6] SALARI N, GHASEMI H, MOHAMMADI L, et al. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res. 2021;16:1-20.
[7] MARTINIAKOVA M, MONDOCKOVA V, KOVACOVA V, et al. Interrelationships among metabolic syndrome, bone-derived cytokines, and the most common metabolic syndrome-related diseases negatively affecting bone quality. Diabetol Metab Syndr. 2024;16(1):217.
[8] ZHU Y, ZENG Q, SHI Y, et al. Association between sarcopenia and osteoporosis: the cross-sectional study from NHANES 1999-2020 and a bi-directions Mendelian randomization study. Front Endocrinol. 2024;15:1399936.
[9] YU C, DU Y, PENG Z, et al. Research advances in crosstalk between muscle and bone in osteosarcopenia. Exp Ther Med. 2023;25(4): 189.
[10] YANG YJ, KIM DJ. An overview of the molecular mechanisms contributing to musculoskeletal disorders in chronic liver disease: osteoporosis, sarcopenia, and osteoporotic sarcopenia. Int J Mol Sci. 2021;22(5):2604.
[11] KIRK B, PROKOPIDIS K, DUQUE G. Nutrients to mitigate osteosarcopenia: the role of protein, vitamin D and calcium. Curr Opin Clin Nutr Metab Care. 2021;24(1):25-32.
[12] POLITO A, BARNABA L, CIARAPICA D, et al. Osteosarcopenia: a narrative review on clinical studies. Int J Mol Sci. 2022;23(10):5591.
[13] CLYNES MA, GREGSON CL, BRUYÈRE O, et al. Osteosarcopenia: where osteoporosis and sarcopenia collide. Rheumatology. 2021;60(2): 529-537.
[14] ROBERTO B, SONIA GG, IDA C, et al. Osteosarcopenia and pain: do we have a way out? Biomedicines. 2023;11(5):1285.
[15] ZHAN Z, ZHANG Y, WU J, et al. Predictive efficacy of different diagnostic criteria for sarcopenia in osteoporosis and fractures. Sci Rep. 2025;15(1):9473.
[16] 靳丹,代新宇,刘淼,等.肌肉骨骼减少症发病机制及其运动防治效果[J].生物化学与生物物理进展,2024,51(5):1105-1118.
[17] ZHU L, RUAN X, ZOU Y, et al. The causal relationship between circulating inflammatory proteins, gut microbiotas, immune cells and leukemia: a bidirectional Mendelian randomization study. Discov Oncol. 2025; 16(1):1-14.
[18] PEI YF, LIU YZ, YANG XL, et al. The genetic architecture of appendicular lean mass characterized by association analysis in the UK Biobank study. Commun Biol. 2020;3(1):608.
[19] JONES G, TRAJANOSKA K, SANTANASTO AJ, et al. Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nat Commun. 2021; 12(1):654.
[20] CRUZ-JENTOFT AJ, BAEYENS JP, BAUER JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412-423.
[21] KARLSSON M, LJUNGREN Ö, AMIN N, et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature. 2015;525(7570):260-263.
[22] XIANG M, WANG Y, GAO Z, et al. Exploring causal correlations between inflammatory cytokines and systemic lupus erythematosus: A Mendelian randomization. Front Immunol. 2023;13:985729.
[23] YANG H, CHEN L, LIU Y. Novel causal plasma proteins for hypothyroidism: a large-scale plasma proteome Mendelian randomization analysis. J Clin Endocrinol Metab. 2023;108(2): 433-442.
[24] ZHOU S, TAO B, GUO Y, et al. Integrating plasma protein-centric multi-omics to identify potential therapeutic targets for pancreatic cancer. J Transl Med. 2024;22(1):557.
[25] ZHAO Q, WANG J, HEMANI G, et al. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. Ann Stat. 2020;48(3): 1742-1768.
[26] LIN Z, PAN I, PAN W. A practical problem with Egger regression in Mendelian randomization. PLoS Genet. 2022;18(5):e1010166.
[27] LEE JE, LEE SR, SONG HK. Muscle mass is a strong correlation factor of total hip BMD among Korean premenopausal women. Osteoporos Sarcopenia. 2016;2(2):99-102.
[28] LASKOU F, PATEL H, COOPER C, et al. Functional capacity, sarcopenia, and bone health. Best Pract Res Clin Rheumatol. 2022;36(3):101756.
[29] HE H, LIU Y, TIAN Q, et al. Relationship of sarcopenia and body composition with osteoporosis. Osteoporos Int. 2016;27(1): 473-482.
[30] LIU C, LIU N, XIA Y, et al. Osteoporosis and sarcopenia-related traits: A bi-directional Mendelian randomization study. Front Endocrinol. 2022;13:975647.
[31] MA XY, LIU HM, LV WQ, et al. A bi-directional Mendelian randomization study of the sarcopenia-related traits and osteoporosis. Aging (Albany NY). 2022;14(14):5681-5694.
[32] 赵常红,王菲菲,连红强,等.骨肌串扰防治骨肌共减症的作用及机制[J].生物化学与生物物理进展,2024,51(11):2936-2946.
[33] 徐帅,赵常红,徐道明,等.肌骨交互视阈下肌骨共减综合症的生物学机制及其运动干预研究进展[J]. 中国体育科技,2022,58(5):75-83.
[34] AHSAN M, GARNEAU L, AGUER C. The bidirectional relationship between AMPK pathway activation and myokine secretion in skeletal muscle: How it affects energy metabolism. Front Physiol. 2022;13:1040809.
[35] CARIATI I, SCIMECA M, BONANNI R, et al. Role of myostatin in muscle degeneration by random positioning machine exposure: an in vitro study for the treatment of sarcopenia. Front Physiol. 2022;13:782000.
[36] GIRARDI F, LE GRAND F. Wnt signaling in skeletal muscle development and regeneration. Prog Mol Biol Transl Sci. 2018;153:157-179.
[37] 赵常红,李世昌,孙朋,等.不同方式运动对生长期大鼠FGF、IGF信号及软骨内成骨的影响[J].中华骨质疏松和骨矿盐疾病杂志, 2021,14(6):628-637.
[38] CHEN LY, WU YH, LIU LK, et al. Association among serum insulin-like growth factor-1, frailty, muscle mass, bone mineral density, and physical performance among community-dwelling middle-aged and older adults in Taiwan. Rejuvenation Res. 2018;21(3):270-277.
[39] DENG Z, LUO P, LAI W, et al. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis. Biochem Biophys Res Commun. 2017;494(1-2):278-284.
[40] ZHAO Z, YAN K, GUAN Q, et al. Mechanism and physical activities in bone-skeletal muscle crosstalk. Front Endocrinol. 2024;14:1287972.
[41] KIRK B, MILLER S, ZANKER J, et al. A clinical guide to the pathophysiology, diagnosis and treatment of osteosarcopenia. Maturitas. 2020;140:27-33.
[42] 苏洋洋,李杭远,吴秀琴.鸢尾素(Irisin):运动诱导骨骼肌自噬的新靶点[J].体育科技文献通报,2022,30(3):235-242.
[43] HU X, WANG Z, WANG W, et al. Irisin as an agent for protecting against osteoporosis: A review of the current mechanisms and pathways. J Adv Res. 2024;62:175-186.
[44] KAWAO N, MORITA H, IEMURA S, et al. Roles of Dkk2 in the linkage from muscle to bone during mechanical unloading in mice. Int J Mol Sci. 2020;21(7):2547.
[45] COLAIANNI G, NOTARNICOLA A, SANESI L, et al. Irisin levels correlate with bone mineral density in soccer players. J Biol Regul Homeost Agents. 2017;31(4 Suppl 1):21-28.
[46] MERA P, LAUE K, FERRON M, et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. 2016;23(6):1078-1092.
[47] LIU S, GAO F, WEN L, et al. Osteocalcin induces proliferation via positive activation of the PI3K/Akt, P38 MAPK pathways and promotes differentiation through activation of the GPRC6A-ERK1/2 pathway in C2C12 myoblast cells. Cell Physiol Biochem. 2017;43(3):1100-1112.
[48] XIE X, HU L, MI B, et al. SHIP1 activator AQX-1125 regulates osteogenesis and osteoclastogenesis through PI3K/Akt and NF-κB signaling. Front Cell Dev Biol. 2022;10:826023.
[49] ESCRICHE-ESCUDER A, FUENTES-ABOLAFIO IJ, ROLDAN-JIMENEZ C, et al. Effects of exercise on muscle mass, strength, and physical performance in older adults with sarcopenia: A systematic review and meta-analysis according to the EWGSOP criteria. Exp Gerontol. 2021; 151:111420.
[50] KITSUDA Y, WADA T, NOMA H, et al. Impact of high-load resistance training on bone mineral density in osteoporosis and osteopenia: a meta-analysis. J Bone Miner Metab. 2021; 39(5):787-803.
|