[1] Marchetti PH, Jarbas d SJ, Jon SB, et al. Muscle Activation Differs between Three Different Knee Joint-Angle Positions during a Maximal Isometric Back Squat Exercise. J Sports Med (Hindawi Publ Corp). 2016;2016:3846123.[2] Tanaka D,Suga T,Tanaka T,et al.Ischemic Preconditioning Enhances Muscle Endurance during Sustained Isometric Exercise. Int J Sports Med. 2016;37(8):614-618.[3] Holloway GP, Bezaire V, Heigenhauser GJ,et al. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activityin human skeletal muscle during aerobic exercise. J Physiol.2006;57I (Pt1): 201-210.[4] Smith BK, Jain SS, Rimbaud S,et al. CD36 is located on the outer mitochondria membrane,upstream of long-chain acyl-CoA synthetase, and regulates palmitate oxidation. Biochem J.2011;437(1):125-134.[5] Xie YC, Dong XM, Wu XM, et al. Inhibitory effects of flavonoids extracted from licorice on lipopolysaccharide-induced acute pulmonary inflammation in mice. International Immunopharmacology. 2009;9(2):194-200.[6] Tang S,Huang W,Ji S,et al.Prenylated flavonoids from Glycyrrhiza uralensis as promising anti-cancer agents: a preliminary structure-activity study. Journal of Chinese Pharmaceutical Sciences.2016; 25(1): 23-29.[7] 黄东,卜凯,阳毅.甘草黄酮对运动大鼠体内糖及脂肪组织RBP4 mRNA表达的影响[J]. 中国实验方剂学杂志, 2014, 20(2): 124-128.[8] 黄东,李跃林,卜凯,等.黄酮对运动大鼠脂肪代谢酶与ERRα表达的影响[J]. 广西师范大学学报:自然科学版,2016,34(1): 168-173.[9] Bedford TG, Tipton CM, Wilson NC, et al. Maximum oxygen consumption of rats and its changes with various experimental procedures.J Appl Physiol.1979;47(6): 1278-1283.[10] 邢国秀,李楠,王童,等.甘草中黄酮类化学成分的研究进展[J].中国中药杂志, 2003, 28(7): 593-597.[11] Bode AM, Dong Z. Chemopreventive Effects of Licorice and Its Components. Current Pharmacology Reports.2015;1(1): 60-71.[12] 何薇,宁静,吴敬敬,等.甘草化学成分与细胞色素P450酶间的相互作用研究进展[J].中草药, 2016, 47(11);1974-1981.[13] 景晶,赵金英,华冰,等. 甘草总黄酮抑制硫代乙酰胺诱导肝纤维化大鼠肝组织中TGF-及Caspase-3的表达[J]. 中国中药杂志, 2015, 40(15): 3034-3040.[14] 张佳莹,魏苗苗,初晓,等. 甘草黄酮对小鼠急性肺损伤保护机制的研究[J]. 中国农学通报, 2012, 28(8):56-62.[15] 冯亚娟,胡滨青,周建华. 甘草黄酮对糖尿病大鼠血糖、血脂水平及抗氧化能力的影响[J]. 山东医药,2016,56(3):23-25.[16] 张明发,沈雅琴. 甘草及其有效成分的抗糖尿病药理作用的研究进展[J]. 抗感染药学,2015,12(1):1-4.[17] 卢宁清,赵伟鸿,樊紫周,等. 宁夏栽培甘草的黄酮提取物降糖作用实验研究[J]. 宁夏医科大学学报,2013,35(5): 510-514.[18] 赵金英,杨卫东,李红兵,等. 栽培甘草中甘草黄酮提取物对糖尿病大鼠血糖血脂的调节作用[J]. 时珍国医国药, 2012, 23(1) : 101-103.[19] 阳毅,莫伟彬,李启畅. 甘草黄酮对运动大鼠肝组织自由基代谢及 P53 mRNA表达的影响[J]. 中国实验方剂学杂志, 2013, 19(19): 245-249.[20] 杨衍滔. 甘草黄酮对运动训练大鼠睾酮、皮质酮及血脂代谢的影响[J]. 现代预防医学, 2015, 42(16):2979-2982.[21] Tao N, Wagner SJ, Lublin DM. CD36 is palmitoylated on both N-and C-terminal cytoplasmic tails. J Biol Chem. 1996; 271(37): 22315-22320.[22] Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112(12): 1785-1785.[23] Zineb T, Azeddine I. Insight into the mechanism of lipids binding and uptake by CD36 receptor. Bioinformation.2015; 11(6):302-306.[24] Tsuzuki S, Amitsuka T, Okahashi T, et al. A single aldehyde group can serve as a structural element for recognition by transmembrane protein CD36. Biosci Biotechnol Biochem. 2016;80(7):1375-1378.[25] Stewart CR,Stuart LM,Wilkinson K,et al.CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature Immunology.2010;11(2):155-161.[26] Moullé VS, Picard A, Le Foll C, et al.Lipid sensing in the brain and regulation of energy balance. Diabetes Metabolism. 2014;40(1):29-33.[27] Harb D, Bujold K, Febbraio M, et al. The role of the scavenger receptor CD36 in regulating mononuclear phagocyte trafficking to atherosclerotic lesions and vascular inflammation. Cardiovasc Res. 2009;83(1):42-51.[28] Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance.Molecular Medicine.2008; 14(3-4):222.[29] 张艳艳,赵蕾,谢云霞,等. FAT/CD36在高脂喂养小鼠脂肪组织炎症中的作用[J]. 中国病理生理杂志, 2015,31(3):463-467.[30] Sundaresan S, Abumrad NA. Dietary Lipids Inform the Gut and Brain about Meal Arrival via CD36-Mediated Signal Transduction. J Nutr. 2015;145(10):2195-200.[31] Liw, Wang D, Chi Y, et al. 7-Ketocholesteryl -9- carboxynona- -noate enhances the expression of ATP-binding cassette transporter A1 via CD36.Atherosclerosis. 2013;226(1): 102-109.[32] Gross B, Pawlak M, Lefebvre P, et al. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 2017;13(1):36-49.[33] Ahn SB, Jang K, Jun DW, et al. Expression of liver X receptor correlates with intrahepatic inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Dig Dis Sci. 2014; 59(12):2975-2982.[34] Xie P, Zhang AT, Wang C, et al. Molecular cloning, characterization, and expression analysis of fatty acid translocase (FAT/CD36) in the pigeon (Columba livia domestica).Poultry Science.2012;91(7):1670-1679.[35] 薄俊霞,李敬达,刘庆平. 脂肪酸移位酶FAT/CD36转运长链脂肪酸研究进展[J]. 动物医学进展, 2017,38(5):93-97.[36] Takai M, Kozai Y, Tsuzuki S, et al. Unsaturated long-chain fatty acids inhibit the binding of oxidized low-density lipoproteins to a model CD36[J]. Bioscience Biotechnology & Biochemistry.2014;78(2):238-244.[37] Kozai Y, Tsuzuki S, Takai M, et al. Further validation of unsaturated long-chain fatty acids as inhibitors for oxidized low-density lipoprotein binding to CD36 via assays with synthetic CD36 peptide-cross-linked plates. Biosci Biotechnol Biochem. 2014;78(5):839-842.[38] Demers A, Samami S, Lauzier B, et al. PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse LiverSignificance. Arterioscler Thromb Vasc Biol. 2015; 35(12):2517-2525.[39] Hoshino D,Yoshida Y,Kitaoka Y,et al.High-intensity interval training increases intrinsic rates of mitochondrial fatty acid oxidation in rat red and white skeletal muscle. Applied Physiology Nutrition & Metabolism.2013;38(3):326-333.[40] Hrometz SL,Ebert JA,Grice KE,et al.Potentiation of Ecstasy-induced hyperthermia and FAT/CD36 expression in chronically exercised animals. Temperature.2016:24(8): 1-5.[41] Talanian JL, Holloway GP, Heigenhauser GJ,etal. Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. Ajp Endocrinology Metabolism.2010;299(2):E180-188.[42] 齐洁任,彩玲,傅建,等.运动降低MG53 表达及其在缓解高脂膳食大鼠IR中的作用[J].中国运动医学杂志,2016,35(3): 240-247.[43] Yoshida Y,Jain SS,Mcfarlan JT,et al.Exercise- and training-induced upregulation of skeletal muscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis.J Physiol.2013;591(Pt18): 4415-4426.[44] Jain SS, Chabowski A, Snook LA, et al. Additive effects of insulin and muscle contraction on fatty acid transport and fatty acid transporters, FAT/CD36, FABPpm, FATP1, 4 and 6. Febs Letters.2009;583(13):2294-300.[45] Lee JK, Lee JS, Park H, et al. Effect of l-carnitine supplementation and aerobic training on FABPc content and β-HAD activity in human skeletal muscle.Eur J Appl Physiol. 2007;99(2): 193-199. |