Chinese Journal of Tissue Engineering Research ›› 2021, Vol. 25 ›› Issue (22): 3591-3596.doi: 10.3969/j.issn.2095-4344.3179
Previous Articles Next Articles
Chen Jie1, Liao Chengcheng2, Zhao Hongbo3, Zhao Wei1, Chen Zhiwei1, Wang Yan1
Received:
2020-06-09
Revised:
2020-06-13
Accepted:
2020-07-31
Online:
2021-08-08
Published:
2021-01-21
Contact:
Wang Yan, MD, Chief physician, Department of Urology, the Third Affiliated Hospital of Zunyi Medical University (Zunyi First People’s Hospital), Zunyi 563000, Guizhou Province, China
About author:
Chen Jie, Master candidate, Physician, Department of Urology, the Third Affiliated Hospital of Zunyi Medical University (Zunyi First People’s Hospital), Zunyi 563000, Guizhou Province, China
Supported by:
CLC Number:
Chen Jie, Liao Chengcheng, Zhao Hongbo, Zhao Wei, Chen Zhiwei, Wang Yan. Application of tissue engineering urethral stent and its preparation technology in urethral reconstruction[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3591-3596.
2.1 男性尿道的正常结构和功能特性 男性尿道的主要功能为排尿作用。尿道结构在组织学上分为黏膜层、黏膜下层和肌层,每层都包含一个复杂的细胞外基质结构,该结构主要由Ⅰ型胶原、Ⅲ型胶原、糖胺聚糖和弹性蛋白组成[11]。细胞外基质中的胶原蛋白提供力量和结构支持,弹性蛋白则提供延展性[12];除了有维持细胞内环境平衡的信号作用外,细胞外基质还在决定尿道机械顺应性方面起着重要作用,当尿道受到损伤时细胞外基质结构也遭到破坏。尿路上皮在形成过程中分泌的细胞外基质具有防止尿道狭窄形成的作用[13]。力学参数可以解释尿道结构与功能之间的关系:尿道组织在低压时较容易发生变形,促进排尿活动;在高压力时不易发生变形,以防发生过度膨胀[14]。尿流率测定被认为是评估下尿路动力学的一种敏感的、非侵入性的功能检查方法,通过测尿流率可以可靠地筛查出尿道狭窄或者梗阻[14]。 在制备尿道支架时需要考虑到支架能保持尿道足够的顺应性。相关研究探索了影响尿道顺应性的不同变量[15]。正常的尿道顺应性依赖于尿道壁具有的良好弹性,这使排尿过程中尿道保持着较低的压强,从而避免尿液反流对膀胱、肾脏造成损伤或出现上尿路感染[2]。实施与尿道相关的手术都可能会影响到尿道功能,尿道支架植入过程同样会损伤到尿道功能,然而可降解支架植入尿道可以明显避免该问题的出现[16]。在尿道支架的设计中需要受到关注的另一个要点是避免漏尿,由于尿液对尿道支架内的细胞成分存在有害作用,所以支架需具有足够的防水性能[17]。总之,从符合尿道自身的结构及功能方面来考虑,以上问题是在制备性能良好支架过程中应该克服的。 2.2 尿道支架 尿道支架在尿道重建中的运用有利于尿道细胞的定位和再生,支架能维持尿道结构稳定并促进新生组织在三维空间中生长。理想的支架必须具有多孔结构,这能有效并持续地扩散生物信号分子[18]。此外,理想的支架材料表面除了能为细胞附着和生长提供较大的表面积外,还应在种子细胞的增殖、迁移和生长方面具有促进作用[19]。此外,组织工程支架的血管化必须足够快,以防止种子细胞死亡[20]。可降解支架的降解过程应该与组织再生速度同步[16]。支架的孔径大小、形状[21]、表面粗糙度[22],以及生物材料的机械性能(如抗拉强度和硬度)是获得理想支架需要考虑的重要特征[23]。RAYA-RIVERA等[24]的一项研究表明,如果这些要求都得到满足,组织工程技术可成功地应用于器官或组织重建。 各种类型的生物可降解和不可降解支架已被开发应用于泌尿系统组织工程中[25]。有研究表明来自支架周围0.5 cm距离内的组织细胞可以迁移到支架上[10],然而在修复更长尿道病变时,因为远距离的细胞不能迁移到支架上,所以有必要在支架上种植细胞。与只植入支架相比,种子细胞能够提高尿道重建的成功率并减少并发症[26]。已有研究证明与脱细胞基质支架相比,细胞种子支架在尿道中具有更好的性能[10]。最近,静电纺丝和生物打印的新技术被用于制备尿道支架,使这些支架具有明确的结构特征和生物力学特性(例如结构强度、孔隙率、生物降解性等)[27]。 2.2.1 脱细胞基质支架 尿道支架的生物材料通常来源于膀胱黏膜下层、小肠黏膜下层和颊黏膜等组织的基质,通常含有细胞黏附和分化所必需的生长因子。脱细胞基质在组织工程中具有重要地位,因为它们在尿道重建中可以有效地模拟尿路上皮细胞外基质[16]。 膀胱黏膜下基质是通过猪膀胱黏膜下层脱细胞法制备的一种胶原基非免疫原性异种材料,其具有良好生物相容性和生物降解性等诸多优点[28]。为了进一步加强植入的膀胱黏膜下基质与受损宿主组织更好结合,ZHANG等[29]运用膀胱黏膜下基质、健康兔尿道肌肉和内皮组织联合治疗雄性家兔尿道狭窄,术后12周移植物与受体组织融合良好,尿道腔重新通畅,肌层致密,上皮完整,血管逐渐浸润移植物,这表明尿道自身组织与支架结合可更好地促进该支架与损伤部位的结合。DORIN等[10]在一项研究中使用从猪膀胱中提取的脱细胞基质来估计正常细胞在该材料上再生修复的最大距离,结果发现短距离尿道缺损(<0.5 cm)经修复后无明显狭窄,然而长距离(>0.5 cm)缺损经修复后疗效欠佳。SAYEG等[30]进一步比较了接种细胞(兔膀胱平滑肌细胞)的膀胱黏膜下基质支架和非接种细胞的膀胱黏膜下基质支架修复兔尿道的治疗效果,结果表明脱细胞基质尿道支架在重建中真正重要的是膀胱黏膜下基质,而非接种的细胞。同样有研究表明无论有没有细胞种植,膀胱黏膜下基质支架都能够成为良好的尿道重建修复基质[31-32]。 LIU等[33]报道了小肠黏膜下基质材料联合尿源性干细胞的成功应用,研究证明与未种植干细胞的该支架相比,种植尿源性干细胞的小肠黏膜下基质支架具有更强的恢复表皮细胞层潜力,并且不会引起免疫反应,这表明小肠黏膜下基质支架联合尿源性干细胞可以更有效地于尿道成形术。 在DAVIS等[34]的一项比较研究中发现,将人尿路上皮细胞分别接种于膀胱黏膜下基质和小肠黏膜下基质上,比较两者培养的人尿路上皮细胞在体外的再生能力,结果表明尽管这两种支架都可被广泛应用,但与小肠黏膜下基质相比,膀胱黏膜下基质支架在促进人类尿路上皮细胞活性和增殖活性方面表现出更大的能力[34]。 人羊膜支架具有免疫原性低、高生物相容性等特性,可更好地成为尿道支架的材料来源[35]。WANG等[35]介绍了裸露人羊膜支架成功运用于尿道修复的研究。同时,RAMUTA等[36]证实了人羊膜具有应用于重建泌尿外科的潜力,因此人羊膜同样可以用于治疗人体尿道损伤。然而关于人羊膜也存在很多问题,包括其制备和储存缺乏标准化方案、具有异质性及机械强度低等缺点[36]。 2.2.2 天然衍生材料支架 使用动物衍生支架可能会传播疾病并涉及伦理问题,而天然衍生材料支架可避免这些问题发生[37],尤其是这些材料与种子细胞结合用于修复尿道可以获得更佳的疗效,因此天然衍生材料尿道支架似乎在尿道修复中更有优势。 丝素蛋白是一种从蚕茧中提取的著名生物材料,可被天然蛋白水解酶完全降解,具有良好的生物相容性和低炎症反应性[38],因其具有支持上皮细胞的增殖和分层功能而被广泛研究及运用。XIE等[39]通过拉伸过程提高丝素的机械强度,进一步接种尿路上皮细胞后植入到尿道缺损的雌性比格犬身上,该研究结果表明,由拉伸丝素蛋白制成的丝素纤维结构具有高孔隙率、表面光滑、均匀等优点,尿路上皮细胞在丝素表面形成多层紧密的尿路上皮层;此外,在将接种细胞后的丝素纤维支架运用于犬尿道重建的研究期间(6个月),重建的尿道无狭窄、瘘等并发症发生[39]。LV等[40]将过氧化钙加入到由人角蛋白、丝素和明胶混合组成的支架中,开发出了一种可以释放氧气的新型支架,虽然该技术使支架的力学性能略有下降,但与未修饰的丝素支架相比尿道上皮细胞增殖能力得到增强。也有研究将基质细胞衍生因子1加入丝素蛋白/三维多孔膀胱脱细胞基质移植物制成混合支架,该支架可持续释放基质细胞衍生因子1促进兔尿道组织再生[38]。 CHUNG等[41]制备了具有丝素膜和多孔丝素泡沫的双层丝素支架,该支架具有的特殊结构,促进了周围细胞伸入多孔丝素泡沫中并增殖,并且丝素薄膜为双层丝素支架提供了良好的密封性。在他们的对照研究中,双层丝素蛋白支架和小肠黏膜下基质在兔子尿道重建中效果相当。ALGARRAHI等[42]将同种双层丝素支架用于不同时间(电凝后1,3个月)的兔尿道狭窄模型,结果表明尽管双层丝素支架可用于治疗尿道狭窄,但在治疗电凝后3个月的尿道狭窄(类似临床常见类型)时会对平滑肌的形成过程产生不利影响。另一项研究还表明与未接种细胞的丝素蛋白相比,将间充质干细胞与丝素蛋白结合可以减少由生物材料引起的炎症反应,并可促进尿道缺损处上皮和平滑肌更快地生长[43],所以将平滑肌细胞或干细胞与双层丝素支架结合是有必要的。 ORABI等[32]运用细胞种植的胶原基支架修复犬尿道长节段损伤,取雄性犬自体膀胱上皮细胞和平滑肌细胞种植于6 cm长的胶原基小管基质上,然后用于替代损伤段尿道,结果显示了尿道正常组织形成,无狭窄发生。因此与无细胞接种的支架相比,使用细胞接种支架似乎更有前景。 2.2.3 生物可降解支架 因合成的生物可降解支架具有良好生物相容性,并能提供足够的机械强度来支撑空间结构而被广泛应用于组织工程中[16]。生物可降解合成支架具有足够的孔隙率并能支持细胞黏附、生长和增殖[22]。此外,生物可降解合成支架材料来源丰富,且细胞外基质成分和生长因子等信号分子可以被结合到支架结构中[44];此外与其他支架相比,它在抵抗免疫排斥反应方面具有优势[22]。 DORATI等[45]探究了一种名为LMP-3055的聚乳酸共聚物在生物组织中的适用性及其在组织工程中的应用能力,共聚物的合成是为了改善聚乳酸的韧性和拉伸性能,但其高度脆性限制了它在组织工程中的应用。FU等[22]对可降解的非针织聚-L-乳酸支架进行了表面修饰,结果表明该工程支架具有90%以上的孔隙率,且具有良好的生物相容性,能支持尿道上皮细胞的黏附、生长和增殖。 SARTONEVA等[46]比较了人羊膜和聚-L-乳酸-己内酯对人尿路上皮细胞活性、增殖能力和表型维持能力的影响,研究发现在尿路上皮细胞接种支架14 d后,大部分细胞在人羊膜支架上死亡,而在聚-L-乳酸-己内酯支架上培养的细胞数量急剧增加,这说明人羊膜对细胞增殖的支持作用不如聚-L-乳酸-己内酯;另外,检测细胞CK7/8、CK19和UPIII的表达水平发现,聚-L-乳酸-己内酯在培养14 d内能保持人尿路上皮细胞的表型。因此,聚-L-乳酸-己内酯支架似乎是一种很有前途的尿路上皮支架。 聚氨酯支架具有优异的力学性能,可以对其机械性能进行调整以适应不同特性的尿道。HICKS等[47]研制了聚氨酯-聚己内酯二醇混合而成的生物可降解支架,并证明了它在尿道重建中具有优异的力学性能。且有相关研究报道了聚氨酯可降解支架是无细胞毒性的[48]。 在NAJI等[44]报道的另一项研究中,将尿路上皮细胞种植在由聚-L-乳酸-己内酯和聚己内酯二醇组合而成的混合支架上,高度疏水的该混合支架被转化为极亲水支架,结果表明该支架可以在不改变细胞表型的情况下维持尿路上皮细胞的存活和生长。 LV等[49]制备了不同比例聚乙二醇含量的聚-L-乳酸和聚乙二醇混合支架,将兔分为接种人羊膜间充质干细胞组、无细胞组和常规尿道修复组,术后12周的结果显示,与无细胞支架和常规尿道修复相比,接种人羊膜间充质干细胞的该支架组形成了与正常尿道组织相似的多层尿路上皮,没有狭窄和瘘管的形成,这表明了人羊膜间充质干细胞种植的该混合支架在尿道重建中具有优势。 2.3 制备尿道支架的重要技术 有很多技术可以制备出高孔隙率、生物相容性及生物可降解支架,其中细胞片层技术、静电纺丝技术及3D打印技术在尿道支架的制备中发挥着重要作用,利用这些技术构建的尿道支架结构更接近于正常尿道。 2.3.1 电纺技术 静电纺丝是一种特殊的纤维制造工艺,它利用聚合物溶液或熔体在电场作用下进行喷射纺丝,具有可控性好、工艺简单、成本低等优点,可以制备成分理想、层次结构可控的纳米纤维支架材料[50]。电纺纳米纤维基质具有高孔隙率和空间互连性,其在细胞增殖、黏附等行为中发挥至关重要作用[51]。电纺技术的新内容主要包括各种支架组合物及在支架内添加的细胞和生物活性物质[52]。 针对组织工程尿道的构建,ZHANG等[29]采用电纺技术制备Ⅰ型胶原与聚(L-丙交酯-己内酯)共聚物组合纳米纤维支架,其在结构和形态上模拟了细胞外基质,这种组合材料具有令人满意的生物力学性能和抗纤维化作用,该纳米纤维支架有利于兔尿道缺损的重建。LV等[49]采用静电纺丝技术制备了不同聚乙二醇含量的聚乳酸/聚乙二醇纤维支架,结果表明了人羊膜间充质干细胞在该支架上黏附、增殖良好。NIU等[53]将体外培养的口腔角质形成细胞接种到利用聚己内酯二醇、胶原和丝素共同制备的高性能纳米纤维支架上,结果发现细胞在该支架上充分黏附、增殖良好,形态均匀,并能伸入支架孔隙生长。也有研究表明,种子细胞基质生物界面和纳米纤维组织工程管状支架可以协同促进尿道重建后再生的血管化[54]。XIE等[39]将犬尿路上皮细胞种植到制备的一种新型静电纺丝基质上以获得组织工程化移植物,结果表明尿路上皮细胞与该电纺基质具有良好的生物相容性。总之,电纺技术在尿道支架材料制作过程中具有很重要的作用。 2.3.2 细胞片层技术 细胞片层技术主要用于制造可移植的组织或者器官[55],近年来被用于尿道重建实验中。ZHOU 等[56]利用细胞片层技术将脂肪干细胞、口腔黏膜上皮细胞和口腔黏膜成纤维细胞构建了一种新型尿道支架,他们将血管化和获得生物力学强度的该支架替换犬2 cm长的阴茎部尿道,组织学分析表明该支架具有3层结构,分别为上皮细胞层、纤维层和肌细胞层;在行尿道替换3个月后,新组织在形态和功能上与正常尿道组织相当。该研究表明,通过细胞片层技术制备的尿道支架可修复尿道壁全层病变。 VERSTEEGDEN等[57]通过细胞片层技术构建了一种具有星形管腔的管状胶原支架,该支架具有径向弹性的特性,在静止状态下管腔关闭,但当管腔压力增加时(例如当流体通过时)管腔打开。CATTAN等[58]开发了一种由人成纤维细胞和人尿路上皮细胞组成的管状尿道移植物,在模拟动态环境下移植物出现良好的层状尿路上皮和基底膜。总之,应用细胞片层技术构建的尿道支架接近于正常尿道结构。 2.3.3 3D打印技术 3D 打印技术在医学领域中又被称为生物3D 打印,是组织工程领域的一项新技术,该技术在精确设计尿道支架的过程中发挥重要作用[59-60]。生物3D打印技术通过利用含有细胞的凝胶进行细胞外基质打印来制作新型支架[61],这种技术可同时将细胞、生长因子和生物材料进行融合[62],该技术能够同时处理多种生物材料和细胞类型,并直接从计算机文件中的数字代码打印出复杂结构[63]。在图像数据的辅助下,根据不同患者的实际情况应用生物打印来生产器官的替代物[58]。生物打印的另一项优势是可以方便地在水凝胶内加入各种生长因子和信号通路调节剂来促进组织的生长和分化,具有广阔的利用前景[64]。目前有4种介导方式应用于3D生物打印,包括直接喷墨、激光、声波和阀门控制挤压[65]。生物打印在支架制造中主要基于对生物墨水的使用,如胶原或海藻酸盐。细胞在水凝胶结构中也有不同的增殖方式,这些生长差异不仅与细胞类型有关,还与水凝胶的性质有关,如孔隙率、硬度及存在促进细胞附着的配体[66-67]。 ZHANG等[68]利用3D打印技术将聚己内酯二醇和聚-L-乳酸-己内酯混合制备体外尿道支架,分别用含兔平滑肌细胞和尿路上皮细胞的纤维蛋白水凝胶对该支架的外表面和内腔表面进行打印,结果表明3D打印技术制备的三维尿道能维持平滑肌细胞和尿路上皮细胞的活性和增殖能力。 "
[1] ZAID UB, LAVIEN G, PETERSON AC. Management of the Recurrent Male Urethral Stricture. Curr Urol Rep. 2016;17(4):33. [2] SIMSEK A, ALDAMANHORI R, CHAPPLE CR, et al. Overcoming scarring in the urethra: Challenges for tissue engineering. Asian J Urol. 2018;5(2):69-77. [3] HAMPSON LA, MCANINCH JW, BREYER BN. Male urethral strictures and their management. Nat Rev Urol. 2014;11(1):43-50. [4] DING J, LI Q, LI S, et al. Ten years’ experience for hypospadias repair: combined buccal mucosa graft and local flap for urethral reconstruction. Urol Int. 2014; 93(4):454-459. [5] MARKIEWICZ MR, DESANTIS JL, MARGARONE JE 3RD, et al. Morbidity associated with oral mucosa harvest for urological reconstruction: an overview. J Oral Maxillofac Surg. 2008;66(4):739-744. [6] HARRIS CR, OSTERBERG EC, SANFORD T, et al. National Variation in Urethroplasty Cost and Predictors of Extreme Cost: A Cost Analysis With Policy Implications. Urology. 2016;94:246-254. [7] XUE JD, GAO J, FU Q, et al. Seeding cell approach for tissue-engineered urethral reconstruction in animal study: A systematic review and meta-analysis. Exp Biol Med (Maywood). 2016;241(13):1416-1428. [8] ATALA A. Engineering organs. Curr Opin Biotechnol. 2009;20(5):575-592. [9] CHAPPLE C. Tissue engineering of the urethra: where are we in 2019? World J Urol. 2020;8(9):2101-2105. [10] DORIN RP, POHL HG, DE FILIPPO RE, et al. Tubularized urethral replacement with unseeded matrices: what is the maximum distance for normal tissue regeneration? World J Urol. 2008;26(4):323-326. [11] DE GRAAF P, RAMADAN R, LINSSEN EC, et al. The multilayered structure of the human corpus spongiosum. Histol Histopathol. 2018;33(12):1335-1345. [12] COENEN AMJ, BERNAERTS KV, HARINGS JAW, et al. Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. Acta Biomater. 2018;79:60-82. [13] BIRDER L, ANDERSSON KE. Urothelial signaling. Physiol Rev. 2013;93(2):653-680. [14] LALLA M, GREGERSEN H, OLSEN LH, et al. In vivo biomechanical assessment of anterior rabbit urethra after repair of surgically created hypospadias. J Urol. 2010;184(2):675-680. [15] MIJAILOVICH SM, SULLIVAN MP, YALLA SV, et al. Effect of urethral compliance on the steady state p-Q relationships assessed with a mechanical analog of the male lower urinary tract. Neurourol Urodyn. 2007;26(2):234-246. [16] ABBAS TO, YALCIN HC, PENNISI CP. From Acellular Matrices to Smart Polymers: Degradable Scaffolds that are Transforming the Shape of Urethral Tissue Engineering. Int J Mol Sci. 2019;20(7):1763. [17] RAJASEKARAN M, STEIN P, PARSONS CL. Toxic factors in human urine that injure urothelium. Int J Urol. 2006;13(4):409‐414. [18] SHALUMON KT, KUO CY, WONG CB, et al. Gelatin/Nanohyroxyapatite Cryogel Embedded Poly(lactic-co-glycolic Acid)/Nanohydroxyapatite Microsphere Hybrid Scaffolds for Simultaneous Bone Regeneration and Load-Bearing. Polymers (Basel). 2018;10(6):620. [19] MARGOLIS G, POLYAK B, COHEN S. Magnetic Induction of Multiscale Anisotropy in Macroporous Alginate Scaffolds. Nano Lett. 2018;18(11):7314-7322. [20] ULERY BD, NAIR LS, LAURENCIN CT. Biomedical Applications of Biodegradable Polymers. J Polym Sci B Polym Phys. 2011;49(12):832-864. [21] STACHEWICZ U, SZEWCZYK PK, KRUK A, et al. Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Mater Sci Eng C Mater Biol Appl. 2019;95:397-408. [22] FU WJ, WANG ZX, LI G, et al. A surface-modified biodegradable urethral scaffold seeded with urethral epithelial cells. Chin Med J (Engl). 2011; 124(19):3087-3092. [23] FIGALLO E, FLAIBANI M, ZAVAN B, et al. Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts. Biotechnol Prog. 2007;23(1):210-216. [24] RAYA-RIVERA A, ESQUILIANO DR, YOO JJ, et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet. 2011;377(9772):1175-1182. [25] DAVIS NF, CUNNANE EM, O’BRIEN FJ, et al. Tissue engineered extracellular matrices (ECMs) in urology: Evolution and future directions. Surgeon. 2018; 16(1):55-65. [26] ENGEL O, SOAVE A, RINK M, et al.Tissue engineering in reconstructive urology. Urologe A. 2015;54(5):690-695. [27] RIDER P, KAČAREVIĆ ŽP, ALKILDANI S, et al. Bioprinting of tissue engineering scaffolds. J Tissue Eng. 2018;9:2041731418802090. [28] SIMÕES IN, VALE P, SOKER S, et al. Acellular Urethra Bioscaffold: Decellularization of Whole Urethras for Tissue Engineering Applications. Sci Rep. 2017;7:41934. [29] ZHANG K, GUO X, ZHAO W, et al. Application of Wnt Pathway Inhibitor Delivering Scaffold for Inhibiting Fibrosis in Urethra Strictures: In Vitro and in Vivo Study. Int J Mol Sci. 2015;16(11):27659-27676. [30] SAYEG K, FREITAS-FILHO LG, WAITZBERG ÂF, et al. Integration of collagen matrices into the urethra when implanted as onlay graft. Int Braz J Urol. 2013;39(3):414-423. [31] DE FILIPPO RE, KORNITZER BS, YOO JJ, et al. Penile urethra replacement with autologous cell-seeded tubularized collagen matrices. J Tissue Eng Regen Med. 2015;9(3):257-264. [32] ORABI H, ABOUSHWAREB T, ZHANG Y, et al. Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study. Eur Urol. 2013;63(3):531-538. [33] LIU Y, MA W, LIU B, et al. Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. Stem Cell Res Ther. 2017;8(1):63. [34] DAVIS NF, CALLANAN A, MCGUIRE BB, et al. Evaluation of viability and proliferative activity of human urothelial cells cultured onto xenogenic tissue-engineered extracellular matrices. Urology. 2011;77(4):1007.e1-1007.e10077. [35] WANG F, LIU T, YANG L, et al. Urethral reconstruction with tissue-engineered human amniotic scaffold in rabbit urethral injury models. Med Sci Monit. 2014;20:2430-2438. [36] RAMUTA TŽ, KREFT ME. Human Amniotic Membrane and Amniotic Membrane-Derived Cells: How Far Are We from Their Use in Regenerative and Reconstructive Urology? Cell Transplant. 2018;27(1):77-92. [37] ORABI H, BOUHOUT S, MORISSETTE A, et al. Tissue engineering of urinary bladder and urethra: advances from bench to patients. ScientificWorldJournal. 2013;2013:154564. [38] LIU Y, HUANG L, YUAN W, et al. Sustained release of stromal cell-derived factor-1 alpha from silk fibroin microfiber promotes urethral reconstruction in rabbits. J Biomed Mater Res A. 2020;108(8):1760-1773. [39] XIE M, SONG L, WANG J, Et al. Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction. J Surg Res. 2013;184(2):774-781. [40] LV X, LI Z, CHEN S, et al. Structural and functional evaluation of oxygenating keratin/silk fibroin scaffold and initial assessment of their potential for urethral tissue engineering. Biomaterials. 2016;84:99-110. [41] CHUNG YG, TU D, FRANCK D, et al. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty. PLoS One. 2014;9(3):e91592. [42] ALGARRAHI K, AFFAS S, SACK BS, et al. Repair of injured urethras with silk fibroin scaffolds in a rabbit model of onlay urethroplasty. J Surg Res. 2018;229:192-199. [43] TIAN B, SONG L, LIANG T, et al. Repair of urethral defects by an adipose mesenchymal stem cell porous silk fibroin material. Mol Med Rep. 2018;18(1):209-215. [44] NAJI M, RASOULI J, SHAKHSSALIM N, et al. Supportive features of a new hybrid scaffold for urothelium engineering. Arch Med Sci. 2015;11(2): 438-445. [45] DORATI R, COLONNA C, TOMASI C, et al. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer. Mater Sci Eng C Mater Biol Appl. 2014;34:130-139. [46] SARTONEVA R, HAIMI S, MIETTINEN S, et al. Comparison of a poly-L-lactide-co-ε-caprolactone and human amniotic membrane for urothelium tissue engineering applications. J R Soc Interface. 2011;8(58):671-677. [47] HICKS BG, LOPEZ EA, EASTMAN R JR, et al. Differential affinity of vitronectin versus collagen for synthetic biodegradable scaffolds for urethroplastic applications. Biomaterials. 2011;32(3):797-807. [48] GUELCHER SA. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev. 2008;14(1):3-17. [49] LV X, GUO Q, HAN F, et al. Electrospun Poly(l-lactide)/Poly(ethylene glycol) Scaffolds Seeded with Human Amniotic Mesenchymal Stem Cells for Urethral Epithelium Repair. Int J Mol Sci. 2016;17(8):1262. [50] PATEL S, PATEL G. A Review and Analysis on Recent Advancements in Bubble Electrospinning Technology for Nanofiber Production. Recent Pat Nanotechnol. 2019;13(2):80-91. [51] VILLARREAL-GÓMEZ LJ, CORNEJO-BRAVO JM, VERA-GRAZIANO R, et al. Electrospinning as a powerful technique for biomedical applications: a critically selected survey. J Biomater Sci Polym Ed. 2016;27(2):157-176. [52] KISHAN AP, COSGRIFF-HERNANDEZ EM. Recent advancements in electrospinning design for tissue engineering applications: A review. J Biomed Mater Res A. 2017;105(10):2892-2905. [53] NIU Y, LIU G, FU M, et al. Designing a multifaceted bio-interface nanofiber tissue-engineered tubular scaffold graft to promote neo-vascularization for urethral regeneration. J Mater Chem B. 2020;8(8):1748-1758. [54] WEI G, LI C, FU Q, et al. Preparation of PCL/silk fibroin/collagen electrospun fiber for urethral reconstruction. Int Urol Nephrol. 2015;47(1):95‐99. [55] KOBAYASHI J, KIKUCHI A, AOYAGI T, et al. Cell sheet tissue engineering: Cell sheet preparation, harvesting/manipulation, and transplantation. J Biomed Mater Res A. 2019;107(5):955-967. [56] ZHOU S, YANG R, ZOU Q, et al. Fabrication of Tissue-Engineered Bionic Urethra Using Cell Sheet Technology and Labeling By Ultrasmall Superparamagnetic Iron Oxide for Full-Thickness Urethral Reconstruction. Theranostics. 2017;7(9):2509-2523. [57] VERSTEEGDEN LR, VAN KAMPEN KA, JANKE HP, et al. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomater. 2017;52:1-8. [58] CATTAN V, BERNARD G, ROUSSEAU A, et al. Mechanical stimuli-induced urothelial differentiation in a human tissue-engineered tubular genitourinary graft. Eur Urol. 2011;60(6):1291-1298. [59] LAL H, PATRALEKH MK. 3D printing and its applications in orthopaedic trauma: A technological marvel. J Clin Orthop Trauma. 2018;9(3):260-268. [60] KAČAREVIĆ ŽP, RIDER PM, ALKILDANI S, et al. An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects. Materials (Basel). 2018;11(11):2199. [61] WANG N, LU JG, HE XL, et al. Effects of ischemic postconditioning on reperfusion injury in rat liver grafts after orthotopic liver transplantation. Hepatol Res. 2009;39(4):382-390. [62] GU BK, CHOI DJ, PARK SJ, et al. 3D Bioprinting Technologies for Tissue Engineering Applications. Adv Exp Med Biol. 2018;1078:15-28. [63] KANG HW, LEE SJ, KO IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312-319. [64] HASSAN S, PRAKASH G, OZTURK A, et al. Evolution and Clinical Translation of Drug Delivery Nanomaterials. Nano Today. 2017;15:91-106. [65] CASTILHO M, DE RUIJTER M, BEIRNE S, et al. Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures? Trends Biotechnol. 2020;S0167-7799(20)30119-0. doi: 10.1016/j.tibtech.2020.04.014. [66] HÖLZL K, LIN S, TYTGAT L, et al. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3):032002. [67] BALOGOVÁ AF, HUDÁK R, TÓTH T, et al. Determination of geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for urethral substitution. J Biotechnol. 2018;284:123-130. [68] ZHANG K, FU Q, YOO J, et al. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 2017;50:154-164. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[3] | Zhang Chao, Lü Xin. Heterotopic ossification after acetabular fracture fixation: risk factors, prevention and treatment progress [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1434-1439. |
[4] | Zhou Jihui, Li Xinzhi, Zhou You, Huang Wei, Chen Wenyao. Multiple problems in the selection of implants for patellar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1440-1445. |
[5] | Wang Debin, Bi Zhenggang. Related problems in anatomy mechanics, injury characteristics, fixed repair and three-dimensional technology application for olecranon fracture-dislocations [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1446-1451. |
[6] | Ji Zhixiang, Lan Changgong. Polymorphism of urate transporter in gout and its correlation with gout treatment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1290-1298. |
[7] | Yuan Mei, Zhang Xinxin, Guo Yisha, Bi Xia. Diagnostic potential of circulating microRNA in vascular cognitive impairment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1299-1304. |
[8] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
[9] | Wan Ran, Shi Xu, Liu Jingsong, Wang Yansong. Research progress in the treatment of spinal cord injury with mesenchymal stem cell secretome [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1088-1095. |
[10] | Liao Chengcheng, An Jiaxing, Tan Zhangxue, Wang Qian, Liu Jianguo. Therapeutic target and application prospects of oral squamous cell carcinoma stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1096-1103. |
[11] | Zhao Min, Feng Liuxiang, Chen Yao, Gu Xia, Wang Pingyi, Li Yimei, Li Wenhua. Exosomes as a disease marker under hypoxic conditions [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1104-1108. |
[12] | Xie Wenjia, Xia Tianjiao, Zhou Qingyun, Liu Yujia, Gu Xiaoping. Role of microglia-mediated neuronal injury in neurodegenerative diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1109-1115. |
[13] | Li Shanshan, Guo Xiaoxiao, You Ran, Yang Xiufen, Zhao Lu, Chen Xi, Wang Yanling. Photoreceptor cell replacement therapy for retinal degeneration diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1116-1121. |
[14] | Jiao Hui, Zhang Yining, Song Yuqing, Lin Yu, Wang Xiuli. Advances in research and application of breast cancer organoids [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1122-1128. |
[15] | Wang Shiqi, Zhang Jinsheng. Effects of Chinese medicine on proliferation, differentiation and aging of bone marrow mesenchymal stem cells regulating ischemia-hypoxia microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1129-1134. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 917
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 528
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||