Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (7): 1143-1148.doi: 10.12307/2024.138
Sun Yukang1, Song Lijuan1, 2, Wen Chunli3, Ding Zhibin4, Tian Hao1, Ma Dong2, Ma Cungen1, Zhai Xiaoyan1, 5, 6
Received:
2023-02-28
Accepted:
2023-04-14
Online:
2024-03-08
Published:
2023-07-17
Contact:
Zhai Xiaoyan, MD, Associate professor, Master’s supervisor, School of Basic Medicine of Shanxi University of Chinese Medicine/Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Jinzhong 030619, Shanxi Province, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, Shanxi Province, China; Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
About author:
Sun Yukang, Master candidate, School of Basic Medicine of Shanxi University of Chinese Medicine/Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Jinzhong 030619, Shanxi Province, China
Supported by:
CLC Number:
Sun Yukang, Song Lijuan, Wen Chunli, Ding Zhibin, Tian Hao, Ma Dong, Ma Cungen, Zhai Xiaoyan. Visualization analysis of stem cell therapy for myocardial infarction based on Web of Science in recent ten years[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1143-1148.
2.1 发文趋势 该研究所选择的3 210篇文献,是来自78个国家3 408个机构的18 713个作者,共发表在了829个期刊上,其引用了来自 7 858个期刊的101 601篇文献。 文献发文量可以展示一个领域的发展现状以及未来前景[7]。图1展示了干细胞治疗心肌梗死研究领域近十年论文发表的时间分布。从整体看,该领域的年发文量在300篇上下波动,且年发文量均保持在240篇以上,尤其以2021年发文量最多,为360篇。2012年在瑞典斯德哥尔摩揭晓了当年的诺贝尔生理学奖得主分别是英国的约翰-戈登和日本的山中伸弥,他们证明了人的成体干细胞生长过程是可以逆转的,可以通过基因修饰的方法重新编程成为未成熟的干细胞,极大地推动了干细胞领域的发展,所以近十年有关该领域的发文量都处于一个较高的水平。2018年美国学者Piero Anversa被曝有关心肌干细胞学术成果造假,导致该领域在2019年的研究成果略有减少,但是2020-2022年的发文量回归正常波动范围。图1所示年累计发文量呈逐年上升趋势,通过Excel软件设置趋势线的功能得出相关系数为R2=0.923 1,吻合程度较高。说明该领域近十年来一直受到较多学者的关注,仍有较大的发展前景,是医学领域研究的热点方向。"
2.2 作者合作 普莱斯在《小科学,大科学》中提出普赖斯定律[8],以及相应计算公式 。上式中I=nmax,m为核心作者的最低发文量,n(x)表示发文量为x的作者数,N为作者总量。通过VOSviewer分析得出nmax=38,m=0.749×√nmax≈4.6,根据普赖斯定律可认为该领域核心作者最低发文数为5篇(包含5篇)。由VOSviewer统计得出,该研究所选文献共有核心作者397位,共计发文2 883篇,占总发文量的89.8%,符合普莱斯定律的半数标准,说明干细胞治疗心肌梗死研究领域的作者具有比较稳定的合作群体。 表1展示了发文量最多的5位作者,其中hausenloy,derek j.发文量排名第一,十年间共计发表38篇文献,被其他文献引用2 445次,平均每篇文献被引用约64次。hausenloy,derek j.是杜克国立大学医学院和英国伦敦大学学院教授、国立大学林永禄医学院兼职教授,同时为新加坡国家心脏中心的高级心脏病专家和临床医生,在缺血性心脏病[9]、心力衰竭[10]、心脏保护和心脏核磁共振成像领域进行了大量的基础和临床研究。研究焦点均为探索新的治疗方法,保护心脏免受急性缺血的不利影响,从而防止心力衰竭的发生。"
2.3 机构合作 通过VOSviewer对所选数据的机构进行统计分析。如表2所示,近十年在干细胞治疗心肌梗死领域发文量最多的10个机构发文量均在47篇以上,文献被引次数均在800次以上,平均每篇文献被引数均大于18次。其中发文量最多的机构为中国第四军医大学,累计发文67篇,同时也是被引用数排名第二的机构,共被引2 668次,说明第四军医大学在该领域的研究较为前沿,被大多数学者所接受,该机构主要研究方向之一是缺血性心脏病治疗方法的基础及临床研究[11-13]。平均每篇被引数最高的机构是伦敦大学学院,其文献被引用数也是最多的,共被引2 749次,且发文量同样位居第三,说明伦敦大学学院在该领域的研究质量较高[14-15],该机构是英国第一所系统讲授医学的学院,在分子和细胞心血管科学、微血管生物学方向研究水平较高,最为受同领域学者所认同。"
其中发文量最多的期刊是《Plos one》[18-20],累计发文108篇,同时也是被引用数最高的期刊,为2 951次,说明此期刊较为重视该研究领域,如相关研究证明了人的间充质干细胞在梗死后不同时期表现出不同的再生效应,尤其是脐血来源的间充质干细胞,这可能与CD105纯度较低有关,这些数据都强调了在临床应用前对不同来源的间充质干细胞进行详细评估的重要性,以增加心肌梗死后干细胞治疗的患者 获益。 平均每篇被引数最多的期刊是《Cardiovascular research》,约为38次/篇,而此期刊的文章也代表了该研究领域近年来的研究方向。高被引文献则反映了其在该领域的学术影响力,说明其研究成果取得了重大的突破性进展与创新,总结高被引文献的特征,有利于发现该领域的研究热点,引领未来的研究方向。如MOLITOR等[21]研究认为缺血性心力衰竭继发心肌梗死的内皮功能障碍是由炎症Nox2+髓样细胞浸润血管壁介导的。南京医科大学学者研究发现Ang-1的瞬时表达可增强hiPSC-aCM(Atrial hiPSC-CMs/心房Hipsc-CMS)的有丝分裂和植入,并增加hiPSC-aCM治疗心肌梗死的修复能力[22]。美国学者GARIKIPATI等[23]通过小鼠实验证明,抗miR-375治疗通过靶向多种细胞类型,至少部分通过磷酸肌醇依赖性蛋白激酶1(PDK-1)/AKT信号机制,减少炎症反应,减少心肌细胞死亡,改善左心室功能,增强血管生成。这些学者的文献均大量被引用,都不同程度的代表了该领域当前的研究热点。 2.5 国家/地区合作 通过VOSviewer统计分析该领域发文量较多的国家/地区,见表4、图4。"
表4所示近十年发文量最多的10个国家/地区,结果发现中国在该领域发文量最多,共计发表1 308篇文献,约占总发文量的41%,文献被引用次数居第二位,共计28 642次,如中南大学湘雅医院学者论证了缺氧条件下骨髓间充质干细胞来源的外泌体(hypoxia-conditioned bone marrow mesenchymal stem cell-derived exosomes,Hypo-Exo)来源的miR125b-5p通过改善心肌细胞凋亡促进缺血性心脏修复的新机制[24];温州医科大学学者通过实验证明多能干细胞来源的新型人体心肌补片(human cardiac muscle patches, hCMP)移植后,梗死面积显著减少,心功能改善,与左心室壁应力降低有关[25]。文献被引用次数最多的国家是美国,共计30 447次,平均每篇被引用数位居第三,约为34次/篇。日本发文量为82篇,但被引用次数居于前列,且是平均每篇被引用数最高的国家,约为50次/篇,说明日本在该领域的文献虽然少,但是质量较高,被国内外的专家学者接受,例如名古屋大学学者的研究结果表明心肌细胞中网格蛋白介导的内吞作用在其摄取抑制细胞凋亡的循环外泌体相关的miRNA中起关键作用[26],此文献被大量的学者所引用。 2.6 关键词分析 此次研究所选数据共有10 663个关键词,关键词分析有利于了解该领域内的核心内容以及热点研究,有助于对该领域的研究现状进行分析和归纳。 2.6.1 关键词共现分析 利用CiteSpace和VOSviewer对数据进行处理,得到结果。表5中展示了频次最高的10个关键词,依次是心肌梗死、心脏、细胞凋亡、心脏保护作用、表达式、缺血再灌注损伤、激活、氧化压力反应、疗法、干细胞。设置关键词检索,细胞凋亡最高被引的是中南大学湘雅医院的文献。"
2.6.2 关键词聚类分析 关键词聚类的作用是展示相关领域当前的主要热点研究方向[27],聚类标签即代表研究方向,聚类序号从0-15代表研究热度依次递减。 利用 CiteSpace对所选文献进行关键词聚类分析,设置聚类显示为0-15,得到结果,见图6。该领域的主要研究内容为聚类#0 cardiovascular magnetic resonance、聚类#1 apoptosis、聚类#2 oxidative stress、聚类#3 cardiac regeneration、聚类#4 myocardial ischemia/reperfusion injury、聚类#5 acute myocardial infarction、聚类#6 myocardial ischemia、聚类#7 microvascular obstruction、聚类#8 ventricular remodeling、聚类#9 bone marrow cell、聚类#10 ischemia-reperfusion injury、聚类#11 cardiogenic shock、聚类#12 tissue engineering、聚类#13 myocardial infarction、聚类#14 cardiac tissue engineering、聚类#15 differentiation。其中聚类#0、聚类#3、聚类#9、聚类#12、聚类#14为治疗手段,治疗手段主要包括心脏磁共振、心脏再生、心脏组织工程等;聚类#1、聚类#2、聚类#4、聚类#6、聚类#7、聚类#8、聚类#10为病生表现,病生表现主要包括氧化应激、心肌缺血、区微血管阻塞、缺血再灌注损伤等;聚类#5、聚类#11、聚类#13为疾病名称。"
爆发词是指某一特定时间段内某个关键词频繁出现的现象,可以反映出不同时期该领域的研究热点以及变化趋势,并可能预示未来的研究趋势。如图7所示大部分爆发词都分布在2018-2022年,同时这几年的发文量也较高,说明该领域在这一阶段进入了高速发展时期。随着近年来该领域的学者愈发关注临床试验,也伴随着国内外心肌梗死患者群体数量的增加,有关临床试验的关键词开始频繁被使用,说明了国内外学者对干细胞治疗心肌梗死临床试验的关注和重视。其中爆发强度最大关键词的是细胞外囊泡(extracellular vesicle),这个关键词由美国学者所提出,首次使用于2017年发表在期刊《EMBO MOLECULAR MEDICINE》上的一篇文献。中国第三军医大学大坪医院重庆心血管病研究所学者在这一方向的研究成果也备受关注,他们的实验数据表明间充质干细胞来源细胞外囊泡 (mesenchymal stem cells extracellular vesicles,MSC-EVs)是间充质干细胞旁分泌物的生物活性成分,足以改善心肌梗死损伤心脏的血管生成和心功能,miR-210-Efna3通路可能参与MSC-EVs促血管生成作用的机制[28]。自2018年突然爆发的心肌缺血/再灌注损伤(myocardial Ischemia-reperfusion injury)是近几年的研究热点,中国宁夏医科大学总医院的学者在这一方向的研究成果受到众多关注[29],他们通过动物实验证明了小檗碱是通过激活AK2/STAT3信号通路,减轻内质网应激诱导的细胞凋亡,从而改善大鼠心肌缺血/再灌注损伤,值得一提的是,中国学者的这篇文献发表于2016年,但该方向热点研究开始于2018年,这篇文献至今仍受到该领域大多数学者关注,说明中国学者在这一方向的研究成果处于前沿水平。 2.6.4 关键词时间线分析 基于关键词的聚类分析,可以直观了解该领域各研究主题之间的关系,为了进一步认识该领域发展的时间分布态势以及预测未来发展趋势,利用CiteSpace选择关键词,设置时间切片为1,做时间线图谱,得到结果如图8。图中线段代表对应聚类,线上的圆形节点代表各个关键词;圆形节点越大代表关键词出现频次越高;时间由左到右代表2012-2022年;从关键词年轮颜色变化来看,大部分关键词近十年来一直被大量使用,只有少数几个关键词于2016年之后几乎不再被使用,如压力超负荷(pressure overload)、心肌细胞增殖(cardiomyocyte proliferation)等。如图所示,近十年来该领域的研究热点一直围绕细胞凋亡(Apoptosis)[30]、缺血再灌注损伤(Ischemia-reperfusion injury) [31-32]、氧化压力反应(Oxidative stress)等方向[33-34]。"
[1] 《中国心血管健康与疾病报告2021》要点解读[J].中国心血管杂志,2022,27(4):305-318. [2] DING X, YANG Z. Knowledge mapping of platform research: a visual analysis using VOSviewer and CiteSpace. Electron Commer Res. 2020: 1-23. [3] 华薇娜,施云,岳泉.美国ISI公司网络版引文索引数据库评价[J].情报理论与实践,2001(1):49-51+55. [4] PAN X, YAN E, CUI M, et al. Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools. J Informetr. 2018;12(2):481-493. [5] 陈悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J].科学学研究,2015,33(2):242-253. [6] 付健,丁敬达.Citespace和VOSviewer软件的可视化原理比较[J].农业图书情报,2019,31(10):31-37. [7] 万晓霞.用文献计量法分析我国中医痹证研究的现状及发展趋势[J].医学情报工作,2000(6):9-10. [8] PRICE DS. A general theory of bibliometric and other cumulative advantage processes. J Am Soc Inf Sci. 1976;27(5):292-306. [9] HAUSENLOY DJ. Cardioprotection techniques: preconditioning, postconditioning and remote con-ditioning (basic science). Curr Pharm Des. 2013;19(25):4544-4563. [10] MADONNA R, VAN LAAKE LW, DAVIDSON SM, et al. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J. 2016;37(23):1789-1798. [11] CHEN J, ZHAN Y, WANG Y, et al. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater. 2018;80: 154-168. [12] YANG Y, SUN Y, YI W, et al. A review of melatonin as a suitable antioxidant against myocardial ischemia–reperfusion injury and clinical heart diseases. J Pineal Res. 2014;57(4):357-366. [13] 倪清蓉,洪环宇,孔静,等.间充质干细胞与缺血性心脏病[J].中国体外循环杂志,2016,14(2):125-128. [14] ONG SB, HERNANDEZ-RESENDIZ S, CRESPO-AVILAN GE, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol ther. 2018;186:73-87. [15] WAHID A, MANEK N, NICHOLS M, et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta‐analysis. J Am Heart Assoc. 2016;5(9): e002495. [16] HAUSENLOY DJ, KHARBANDN RK, MøLLER UK, et al. Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial. Lancet. 2019;394(10207):1415-1424. [17] ANDREADOU I, CABRERA-FUENTES HA, DEVAUX Y, et al. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res. 2019;115(7):1117-1130. [18] SARASWATI S, ALFARO MP, THORNE CA, et al. Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling. PloS one. 2010;5(11):e15521. [19] GAEBEL R, FURLAIN D, SORG H, et al. Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. Plos one. 2011, 6(2): e15652. [20] 吴卓晶,刘君,王应宽.Nature、Science及PLoS ONE网络出版现状分析[J].中国科技期刊研究,2014,25(1):44-48. [21] MOLITOR M, RUDI W S, GARLAPATI V, et al. Nox2+ myeloid cells drive vascular inflammation and endothelial dysfunction in heart failure after myocardial infarction via angiotensin II receptor type 1. Cardiovasc Res. 2021, 117(1): 162-177. [22] TAO Z, LOO S, SU L, et al. Angiopoietin-1 enhanced myocyte mitosis, engraftment, and the reparability of hiPSC-CMs for treatment of myocardial infarction.Cardiovasc Res. 2021;117(6):1578-1591. [23] GARIKIPATI VNS, VERMA SK, JOLARDARASHI D, et al. Therapeutic inhibition of miR-375 attenuates post-myocardial infarction inflammatory response and left ventricular dysfunction via PDK-1-AKT signalling axis. Cardiovasc Res. 2017;113(8):938-949. [24] ZHU LP, TIAN T, WANG JY, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics. 2018;8(22):6163. [25] GAO L, GREGORICH ZR, ZHU W, et al. Large cardiac muscle patches engineered from human induced-pluripotent stem cell–derived cardiac cells improve recovery from myocardial infarction in swine. Circulation. 2018;137(16):1712-1730. [26] EGUCHI S, TAKEFUJI M, SAKAGUCHI T, et al. Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction. J Biol Chem. 2019;294(31): 11665-11674. [27] 胡缤予,徐韬,赵凌.近十年针灸治疗功能性消化不良研究的热点及趋势——基于文献关键词聚类分析[J].中医杂志,2022,63(14): 1327-1332. [28] WANG NA, CHEN C, YANG D, et al. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochim Biophys Acta Mol Basis Dis. 2017;1863(8):2085-2092. [29] ZHAO G, YU L, GAO W, et al. Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol Sin. 2016;37(3):354-367. [30] MOGHADDOM AS, AFSHARI JT, ESMAEILI SA, et al. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis. 2019;285:1-9. [31] XIE M, KONG Y, TAN W, et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation. 2014;129(10):1139-1151. [32] SCHULZ R, GöRGE PM, GöRBE A, et al. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol Ther. 2015;153:90-106. [33] STUB D, SMITH K, BERNARD S, et al. Air versus oxygen in ST-segment–elevation myocardial infarction. Circulation. 2015;131(24):2143-2150. [34] MIRIYALA S, SPASOJEVIC I, TOVMASYAN A, et al. Manganese superoxide dismutase, MnSOD and its mimics. Biochim Biophys Acta Mol Basis Dis. 2012;1822(5):794-814. [35] ZHANG F, SONG G, LI X, et al. Transplantation of iPSc ameliorates neural remodeling and reduces ventricular arrhythmias in a post‐infarcted swine model. J Cell Biochem Suppl. 2014;115(3):531-539. [36] SHI H, GAO Y, DONG Z, et al. GSDMD-mediated cardiomyocyte pyroptosis promotes myocardial I/R injury. Circ Res. 2021;129(3):383-396. [37] ZWETSLOOT PP, VEGH AMD, JANSEN OF LORKEERS SJ, et al. Cardiac stem cell treatment in myocardial infarction: a systematic review and meta-analysis of preclinical studies.Circ Res. 2016;118(8):1223-1232. [38] KHAN K, GASBARRINO K, MAHMOUD I, et al. Bioactive scaffolds in stem-cell-based therapies for cardiac repair: protocol for a meta-analysis of randomized controlled preclinical trials in animal myocardial infarction models. Syst Rev. 2018;7(1):1-7. [39] 尤宏钊,张健.干细胞治疗心肌梗死和缺血性心力衰竭的临床应用进展[J].中国循环杂志,2014,29(6):476-478. [40] BOLLI R, CHUGH AR, D’AMARIO D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378(9806):1847-1857. [41] ASSMUS B, WALTER DH, SEEGER FH, et al. Effect of shock wave–facilitated intracoronary cell therapy on LVEF in patients with chronic heart failure: the CELLWAVE randomized clinical trial. JAMA. 2013; 309(15):1622-1631. [42] 张晓霞,王晓曦,段海峰,等.脐带华通胶间充质干细胞治疗缺血性心脏病临床疗效观察[J].解放军医学院学报,2013,34(5):431-434. [43] 褚玉茹,于乃浩,阚建英.骨髓来源干细胞移植治疗急性心肌梗死患者的临床疗效和安全性的Meta分析[J].天津医药,2018,46(9): 1005-1012. [44] 罗志荣,蔡昊,王强利,等.临床应用干细胞治疗心肌梗死面临的问题及进展[J].转化医学电子杂志,2018,5(1):44-47. [45] 张屿森,崔光辉,刘俐,等.干细胞治疗缺血性心肌病的临床研究进展[J].中华临床医师杂志(电子版),2019,13(1):65-68. |
[1] | Wang Shanshan, Shu Qing, Tian Jun. Physical factors promote osteogenic differentiation of stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1083-1090. |
[2] | Pan Xiaolong, Fan Feiyan, Ying Chunmiao, Liu Feixiang, Zhang Yunke. Effect and mechanism of traditional Chinese medicine on inhibiting the aging of mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1091-1098. |
[3] | Xu Canli, He Wenxing, Wang Lei, Wu Fangting, Wang Jiahui, Duan Xuelin, Zhao Tiejian, Zhao Bin, Zheng Yang. Bibliometric analysis of researches on liver organoids [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1099-1104. |
[4] | Liu Hanfeng, Wang Jingjing, Yu Yunsheng. Artificial exosomes in treatment of myocardial infarction: current status and prospects [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1118-1123. |
[5] | Ma Shuwei, He Sheng, Han Bing, Zhang Liaoyun. Exosomes derived from mesenchymal stem cells in treatment of animals with acute liver failure: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1137-1142. |
[6] | Feng Ruiqin, Han Na, Zhang Meng, Gu Xinyi, Zhang Fengshi. Combination of 1% platelet-rich plasma and bone marrow mesenchymal stem cells improves the recovery of peripheral nerve injury [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 985-992. |
[7] | Wang Wen, Zheng Pengpeng, Meng Haohao, Liu Hao, Yuan Changyong. Overexpression of Sema3A promotes osteogenic differentiation of dental pulp stem cells and MC3T3-E1 [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 993-999. |
[8] | Qiu Xiaoyan, Li Bixin, Li Jingdi, Fan Chuiqin, Ma Lian, Wang Hongwu. Differentiation of insulin-producing cells from human umbilical cord mesenchymal stem cells infected by MAFA-PDX1 overexpressed lentivirus [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1000-1006. |
[9] | Liu Qiwei, Zhang Junhui, Yang Yuan, Wang Jinjuan. Role and mechanism of umbilical cord mesenchymal stem cells on polycystic ovary syndrome [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1015-1020. |
[10] | Zhang Kefan, Shi Hui. Research status and application prospect of cytokine therapy for osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 961-967. |
[11] | Wei Yuanxun, Chen Feng, Lin Zonghan, Zhang Chi, Pan Chengzhen, Wei Zongbo. The mechanism of Notch signaling pathway in osteoporosis and its prevention and treatment with traditional Chinese medicine [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 587-593. |
[12] | Lin Feng, Cheng Ling, Gao Yong, Zhou Jianye, Shang Qingqing. Hyaluronic acid hydrogel-encapsulated bone marrow mesenchymal stem cells promote cardiac function in myocardial infarction rats (III) [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 355-359. |
[13] | Bi Yujie, Ma Dujun, Peng Liping, Zhou Ziqiong, Zhao Jing, Zhu Houjun, Zhong Qiuhui, Yang Yuxin. Strategy and significance of Chinese medicine combined with medical hydrogel for disease treatment [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 419-425. |
[14] | Xie Enli, Tao Huimin. Application trends of blood flow restriction training in clinical rehabilitation [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(2): 258-262. |
[15] | Chen Guanting, Zhang Linqi, Li Qingru. Research hot spots and trends of exosomes in theranostic application for chronic kidney disease [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(1): 86-92. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 297
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 543
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||