中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (17): 4472-4486.doi: 10.12307/2026.183
• 组织构建循证医学 evidence-based medicine in tissue construction • 上一篇 下一篇
张益林1,徐 恺2,殷明越2,孔 昊1,刘承豪1,谢 云1
收稿日期:2025-06-06
接受日期:2025-09-17
出版日期:2026-06-18
发布日期:2025-12-03
通讯作者:
谢云,博士,教授,博士生导师,天津体育学院运动训练学院,天津市 301617
作者简介:张益林,男,2000年生,四川省广元市人,汉族,天津体育学院在读硕士,主要从事运动训练科学化中的运动表现研究。
并列第一作者:徐恺,男,1998年生,安徽省蒙城县人,汉族,上海体育大学在读硕士,主要从事优化运动任务中的运动表现研究。
并列第一作者:殷明越,男,2000年生,四川省成都市人,汉族,上海体育大学在读硕士,主要从事优化心脏代谢健康的新兴运动策略及机制研究。
Zhang Yilin1, Xu Kai2, Yin Mingyue2, Kong Hao1, Liu Chenghao1, Xie Yun1
Received:2025-06-06
Accepted:2025-09-17
Online:2026-06-18
Published:2025-12-03
Contact:
Xie Yun, PhD, Professor, Doctoral supervisor, School of Sports Training, Tianjin University of Sport, Tianjin 301617, China
About author:Zhang Yilin, MS candidate, School of Sports Training, Tianjin University of Sport, Tianjin 301617, China
Xu Kai, MS candidate, School of Sports Performance, Shanghai University of Sport, Shanghai 200438, China
Yin Mingyue, MS candidate, School of Sports Performance, Shanghai University of Sport, Shanghai 200438, China
Zhang Yilin, Xu Kai and Yin Mingyue contributed equally to this work.
摘要:
文题释义:
缺血预处理方案:指缺血与再灌注的组数与持续时间,例如3×5 min方案,即缺血5 min,再灌注5 min,共3组。
安慰剂:指假性缺血与再灌注,通常施加较小甚至可忽略不计的压力值于肢体近心端。
运动表现:此研究通过一系列综合指标来代替运动表现,包括平衡能力、跳跃、力量、最大氧亏累积、输出功率、重复次数、计时赛成绩、力竭测试时间和摄氧量。
目的:运动表现提升一直是体育科学关注的焦点。缺血预处理作为一种非药物干预手段已被证实可提升运动表现,然而其效果在不同研究中存在分歧,影响因素尚不明确。此项研究旨在对缺血预处理结合运动的原创研究进行系统荟萃分析,探讨其实际效应及潜在调节机制。
方法:依据《系统综述与元分析优先报告条目》规范,于2024-09-04检索Web of Science核心合集、PubMed、Embase与中国知网数据库,以“ischemic preconditioning,performance,sport,缺血预处理”等为关键词。纳入标准:①非疾病人群;②缺血预处理对照为假性缺血预处理或无缺血处理;③结局指标包括平衡、跳跃、力量、氧亏、功率、重复次数、计时成绩、力竭时间与摄氧量等;④研究类型为随机对照试验或随机交叉研究。采用Cochrane Risk of Bias 2.0与GRADE评估偏倚风险与证据等级;使用R 4.3.3中的“meta”“metafor”以及“clubSandwich”包进行多层次效应合并、发表偏倚检验、亚组及回归分析。
结果:共纳入90篇文献,1 439名受试者,年龄在18-70岁。①相比假性缺血预处理或空白对照,缺血预处理可有效提高运动表现[ES=0.13,95%CI(0.06,0.21),P < 0.01,Q=427,I2-Level 2=0%,I2-Level 3=9.13%,I2-Level 4=5.74%,PI(-0.18,0.44),低证据等级]。②亚组组间分析发现缺血预处理组 vs.空白对照组的效果提升显著大于(P=0.02)缺血预处理组 vs. 假性缺血预处理组[ESCON=0.22,95%CI(0.12,0.33),P < 0.01;ESSHAM=0.10,95%CI (0.02,0.18),P < 0.01]。③不同能量代谢特点(无氧或有氧运动)、运动经验水平、性别组间未发现显著差异。④缺血预处理方案中,发现仅1篇的1×5 min方案显著大于其余所有方案(P=0.01)。组内差异发现,仅3×5 min [ES=0.14,95%CI (0.03,0.26),P < 0.01]、4×5 min[ES=0.10,95%CI (0.00,0.21),P=0.02]方案在统计学上显著。⑤久坐不动者[ES=0.14,95%CI(-0.10,0.39,P=0.03]、休闲活动者[ES=0.15,95%CI(0.03,0.27),P=0.02]、发展或训练中受试者 [ES=0.19,95%CI (0.04,0.33),P=0.01]的运动表现显著提高;高度训练或国家级运动员、精英或国际级运动员,以及世界级运动员的运动表现变化均不显著。仅男性受试者[ES=0.20,95%CI (0.10,0.30),P < 0.01]在统计学上显著。
结论:缺血预处理对运动表现的提升效果微弱,且存在显著的安慰剂效应(心理作用)。缺血预处理方案(缺血再灌注时长)也是影响运动表现的一个调节因子,其中3×5 min或4×5 min的方案效果最佳。运动经验水平较低的男性反应更为显著,但性别、经验以及年龄作为调节因子尚无明确统计学结果支持。未来研究应加强对安慰剂效应的控制,采用标准化的缺血和再灌注方案深入探索缺血预处理的独立效应与适用边界。
https://orcid.org/0009-0003-3285-0851(张益林);https://orcid.org/0009-0005-1960-671X(谢云)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
张益林, 徐 恺, 殷明越, 孔 昊, 刘承豪, 谢 云. 缺血预处理影响运动表现的系统评价与多层次荟萃分析[J]. 中国组织工程研究, 2026, 30(17): 4472-4486.
Zhang Yilin, Xu Kai, Yin Mingyue, Kong Hao, Liu Chenghao, Xie Yun. Effects of ischemic preconditioning on sport performance: a systematic review and multilevel meta-analysis[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(17): 4472-4486.






| [1] GIRARD O, AMANN M, AUGHEY R, et al. Position statement--altitude training for improving team-sport players’ performance: current knowledge and unresolved issues. Br J Sports Med. 2013;47 Suppl 1(Suppl 1):i8-16. [2] CARU M, LEVESQUE A, LALONDE F, et al. An overview of ischemic preconditioning in exercise performance: A systematic review. J Sport Health Sci. 2019;8(4): 355-369. [3] DAVIDS CJ, ROBERTS LA, BJØRNSEN T, et al. Where Does Blood Flow Restriction Fit in the Toolbox of Athletic Development? A Narrative Review of the Proposed Mechanisms and Potential Applications. Sports Med. 2023;53(11):2077-2093. [4] BLAZEVICH AJ, BABAULT N. Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front Physiol. 2019;10:1359. [5] CRISAFULLI A, TANGIANU F, TOCCO F, et al. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. J Appl Physiol. 2011;111(2):530-536. [6] MURRY CE, JENNINGS RB, REIMER KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124-1136. [7] MURRY CE, RICHARD VJ, REIMER KA, et al. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res. 1990;66(4):913-931. [8] REIMER KA, MURRY CE, JENNINGS RB. Cardiac adaptation to ischemia. Ischemic preconditioning increases myocardial tolerance to subsequent ischemic episodes. Circulation. 1990;82(6):2266-2268. [9] REIMER KA, MURRY CE, YAMASAWA I, et al. Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol. 1986;251(6 Pt 2):H1306-1315. [10] DE GROOT PC, THIJSSEN DH, SANCHEZ M, et al. Ischemic preconditioning improves maximal performance in humans. Eur J Appl Physiol. 2010;108(1):141-146. [11] FERREIRA TN, SABINO-CARVALHO JL, LOPES TR, et al. Ischemic Preconditioning and Repeated Sprint Swimming: A Placebo and Nocebo Study. Med Sci Sports Exerc. 2016;48(10):1967-1975. [12] MAROCOLO M, DA MOTA GR, PELEGRINI V, et al. Are the Beneficial Effects of Ischemic Preconditioning on Performance Partly a Placebo Effect? Int J Sports Med. 2015;36(10):822-825. [13] CARVALHO L, BARROSO R. Ischemic Preconditioning Improves Strength Endurance Performance. J Strength Cond Res. 2019;33(12):3332-3337. [14] DA SILVA NOVAES J, DA SILVA TELLES LG, MONTEIRO ER, et al. Ischemic Preconditioning Improves Resistance Training Session Performance. J Strength Cond Res. 2021;35(11):2993-2998. [15] PETHICK J, CASSELTON C, WINTER SL, et al. Ischemic Preconditioning Blunts Loss of Knee Extensor Torque Complexity with Fatigue. Med Sci Sports Exerc. 2021; 53(2):306-315. [16] PEREIRA HM, DE LIMA FF, SILVA BM, et al. Sex differences in fatigability after ischemic preconditioning of non-exercising limbs. Biol Sex Differ. 2020;11(1):59. [17] BAILEY TG, BIRK GK, CABLE NT, et al. Remote ischemic preconditioning prevents reduction in brachial artery flow-mediated dilation after strenuous exercise. Am J Physiol Heart Circ Physiol. 2012;303(5):H533-538. [18] BAILEY TG, JONES H, GREGSON W, et al. Effect of Ischemic Preconditioning on Lactate Accumulation and Running Performance. Med Sci Sports Exerc. 2012; 44(11):2084-2089. [19] CHEUNG CP, SLYSZ JT, BURR JF. Ischemic Preconditioning: Improved Cycling Performance Despite Nocebo Expectation. Int J Sports Physiol Perform. 2020;15(3): 354-360. [20] CRUZ RS, DE AGUIAR RA, TURNES T, et al. Effects of ischemic preconditioning on maximal constant-load cycling performance. J Appl Physiol (1985). 2015;119(9):961-967. [21] PAULL EJ, VAN GUILDER GP. Remote ischemic preconditioning increases accumulated oxygen deficit in middle-distance runners. J Appl Physiol. 2019;126(5):1193-1203. [22] 苏玉莹,李卫.远程缺血预处理对运动表现的影响及其生理机制研究进展[J].中国体育科技,2024,60(10):31-39. [23] GIBSON N, WHITE J, NEISH M, et al. Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. Int J Sports Physiol Perform. 2013;8(6):671-676. [24] JEAN-ST-MICHEL E, MANLHIOT C, LI J, et al. Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc. 2011;43(7):1280-1286. [25] WILLIAMS N, RUSSELL M, COOK CJ, et al. Effect of Ischemic Preconditioning on Maximal Swimming Performance. J Strength Cond Res. 2021;35(1):221-226. [26] RICHARD P, BILLAUT F. Time-Trial Performance in Elite Speed Skaters After Remote Ischemic Preconditioning. Int J Sports Physiol Perform. 2018;13(10): 1308-1316. [27] LINDNER TD, SCHOLTEN SD, HALVERSON JM, et al. The Acute Effects of Ischemic Preconditioning on Power and Sprint Performance. S D Med. 2021;74(5):210-219. [28] NIESPODZINSKI B, MIESZKOWSKI J, KOCHANOWICZ M, et al. Effect of 10 consecutive days of remote ischemic preconditioning on local neuromuscular performance. J Electromyogr Kinesiol. 2021;60:102584. [29] DE SOUZA HLR, ARRIEL RA, MOTA GR, et al. Does ischemic preconditioning really improve performance or it is just a placebo effect? PLoS One. 2021;16(5):e0250572. [30] VALENZUELA PL, MARTÍN-CANDILEJO R, SÁNCHEZ-MARTÍNEZ G, et al. Ischemic Preconditioning and Muscle Force Capabilities. J Strength Cond Res. 2021; 35(8):2187-2192. [31] SLYSZ JT, BURR JF. Impact of 8 weeks of repeated ischemic preconditioning on running performance. Eur J Appl Physiol. 2019;119(6):1431-1437. [32] SEEGER JPH, TIMMERS S, PLOEGMAKERS DJM, et al. Is delayed ischemic preconditioning as effective on running performance during a 5km time trial as acute IPC? J Sci Med Sport. 2017;20(2):208-212. [33] PARADIS-DESCHÊNES P, LAPOINTE J, JOANISSE DR, et al. Similar Recovery of Maximal Cycling Performance after Ischemic Preconditioning, Neuromuscular Electrical Stimulation or Active Recovery in Endurance Athletes. J Sports Sci Med. 2020;19(4):761-771. [34] MIESZKOWSKI J, STANKIEWICZ B, KOCHANOWICZ A, et al. Effect of Ischemic Preconditioning on Marathon-Induced Changes in Serum Exerkine Levels and Inflammation. Front Physiol. 2020;11: 571220. [35] COCKING S, WILSON MG, NICHOLS D, et al. Is There an Optimal Ischemic-Preconditioning Dose to Improve Cycling Performance? Int J Sports Physiol Perform. 2018;13(3):274-282. [36] BEHRENS M, ZSCHORLICH V, MITTLMEIER T, et al. Ischemic Preconditioning Did Not Affect Central and Peripheral Factors of Performance Fatigability After Submaximal Isometric Exercise. Front Physiol. 2020; 11:371. [37] CLEVIDENCE MW, MOWERY RE, KUSHNICK MR. The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. Eur J Appl Physiol. 2012;112(10):3649-3654. [38] GOLDSMITH M, SIEGLER J, GREEN S. Targeted effect of ischemic preconditioning on the gas exchange threshold in healthy males and females. Eur J Appl Physiol. 2024;124(9):2697-2706. [39] KAUR G, BINGER M, EVANS C, et al. No influence of ischemic preconditioning on running economy. Eur J Appl Physiol. 2017;117(2):225-235. [40] SOUZA HLR, OLIVEIRA GT, MEIRELES A, et al. Does ischemic preconditioning enhance sports performance more than placebo or no intervention? A systematic review with meta-analysis. J Sport Health Sci. 2024;14:101010. [41] TEIXEIRA AL, GANGAT A, BOMMARITO JC, et al. Ischemic Preconditioning Acutely Improves Functional Sympatholysis during Handgrip Exercise in Healthy Males but not Females. Med Sci Sports Exerc. 2023;55(7):1250-1257. [42] PAGE MJ, MCKENZIE JE, BOSSUYT PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. [43] STERNE JAC, SAVOVIĆ J, PAGE MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019; 366:l4898. [44] CUMPSTON M, LI T, PAGE MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;2019(10):ED000142. [45] GASTIN PB. Energy system interaction and relative contribution during maximal exercise. Sports Med Auckl NZ. 2001;31(10):725-741. [46] INCOGNITO AV, BURR JF, MILLAR PJ. The Effects of Ischemic Preconditioning on Human Exercise Performance. Sports Med. 2016;46(4):531-544. [47] MCKAY AKA, STELLINGWERFF T, SMITH ES, et al. Defining Training and Performance Caliber: A Participant Classification Framework. Int J Sports Physiol Perform. 2021;17(2):317-331. [48] SLYSZ JT, PETRICK HL, MARROW JP, et al. An examination of individual responses to ischemic preconditioning and the effect of repeated ischemic preconditioning on cycling performance. Eur J Sport Sci. 2020;20(5):633-640. [49] HEDGES LV, OLKIN I. Statistical methods for meta-analysis. Pittsburgh:Academic Press. 2014. [50] VAN DEN NOORTGATE W, LÓPEZ-LÓPEZ JA, MARÍN-MARTÍNEZ F, et al. Three-level meta-analysis of dependent effect sizes. Behav Res Methods. 2013;45(2):576-594. [51] HEDGES LV, TIPTON E, JOHNSON MC. Robust variance estimation in meta-regression with dependent effect size estimates. Res Synth Methods. 2010;1(1):39-65. [52] CHEUNG MW. A Guide to Conducting a Meta-Analysis with Non-Independent Effect Sizes. Neuropsychol Rev. 2019;29(4):387-396. [53] FERNÁNDEZ-CASTILLA B, ALOE AM, DECLERCQ L, et al. Estimating outcome-specific effects in meta-analyses of multiple outcomes: A simulation study. Behav Res Methods. 2021;53(2):702-717. [54] JUKIC I, CASTILLA AP, RAMOS AG, et al. The Acute and Chronic Effects of Implementing Velocity Loss Thresholds During Resistance Training: A Systematic Review, Meta-Analysis, and Critical Evaluation of the Literature. Sports Med. 2023;53(1): 177-214. [55] VEMBYE MH, JAMES EP. Power approximations for overall average effects in meta-analysis with dependent effect sizes. J Educ Behav Stat. 2023;48(1):70-102. [56] TIPTON E, PUSTEJOVSKY JE. Small-Sample Adjustments for Tests of Moderators and Model Fit Using Robust Variance Estimation in Meta-Regression. J Educ Behav Stat. 2015;40(6):604-634. [57] VIECHTBAUER W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:1-48. [58] PUSTEJOVSKY JE, TIPTON E. Meta-analysis with Robust Variance Estimation: Expanding the Range of Working Models. Prev Sci. 2022;23(3):425-438. [59] TURNES T, DE AGUIAR RA, DE OLIVEIRA CRUZ RS, et al. Impact of ischaemia-reperfusion cycles during ischaemic preconditioning on 2000-m rowing ergometer performance. Eur J Appl Physiol. 2018;118(8):1599-1607. [60] PARADIS-DESCHÊNES P, JOANISSE DR, MAURIÈGE P, et al. Ischemic Preconditioning Enhances Aerobic Adaptations to Sprint-Interval Training in Athletes Without Altering Systemic Hypoxic Signaling and Immune Function. Front Sports Act Living. 2020;2:41. [61] RICO-GONZÁLEZ M, PINO-ORTEGA J, CLEMENTE FM, et al. Guidelines for performing systematic reviews in sports science. Biol Sport. 2022;39(2):463-471. [62] PETERS JL, SUTTON AJ, JONES DR, et al. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol. 2008;61(10):991-996. [63] EGGER M, DAVEY SMITH G, SCHNEIDER M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315(7109):629-634. [64] SCHÜNEMANN HJ, HIGGINS JPT, VIST GE, et al. Completing ‘Summary of findings’ tables and grading the certainty of the evidence//HIGGINS JPT, THOMAS J, CHANDLER J, et al. Cochrane Handbook for Systematic Reviews of Interventions. New York: John Wiley & Sons, Inc. 2019:375-402. [65] GUYATT G, OXMAN AD, AKL EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383-394. [66] SANTESSO N, CARRASCO-LABRA A, LANGENDAM M, et al. Improving GRADE evidence tables part 3: detailed guidance for explanatory footnotes supports creating and understanding GRADE certainty in the evidence judgments. J Clin Epidemiol. 2016;74:28-39. [67] ALBUQUERQUE MR, FLÔR CAG, RIBEIRO AIS, et al. Effects of Ischemic Preconditioning on Sport-Specific Performance in Highly Trained Taekwondo Athletes. Sports (Basel). 2024;12(7):179. [68] TELLES LGDS, BILLAUT F, CUNHA G, et al. Ischemic Preconditioning Improves Handgrip Strength and Functional Capacity in Active Elderly Women. Int J Environ Res Public Health. 2022;19(11):6628. [69] ALLOIS R, PAGLIARO P, ROATTA S. Ischemic Conditioning to Reduce Fatigue in Isometric Skeletal Muscle Contraction. Biology (Basel). 2023;12(3):460. [70] BARBOSA TC, MACHADO AC, BRAZ ID, et al. Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scand J Med Sci Sports. 2015;25(3):356-364. [71] CARVALHO L, BARROSO R. Effects of ischemic preconditioning on the isometric test variables. Sci Sports. 2019;34(3): E225-E228. [72] CEYLAN B, FRANCHINI E. Ischemic preconditioning does not improve judo-specific performance but leads to better recovery in elite judo athletes. Sci Sports. 2022;37(4):322.e1-322.e7. [73] CEYLAN B, TAŞKIN HB, ŠIMENKO J. Effect of Ischemic Preconditioning on Acute Recovery in Elite Judo Athletes: A Randomized, Single-Blind, Crossover Trial. Int J Sports Physiol Perform. 2023;18(2):180-186. [74] CHENG CF, KUO YH, HSU WC, et al. Local and Remote Ischemic Preconditioning Improves Sprint Interval Exercise Performance in Team Sport Athletes. Int J Environ Res Public Health. 2021;18(20):10653. [75] CRUZ RS, DE AGUIAR RA, TURNES T, et al. Effects of ischemic preconditioning on short-duration cycling performance. Appl Physiol Nutr Metab. 2016;41(8):825-831. [76] CRUZ R, TRAMONTIN AF, OLIVEIRA AS, et al. Ischemic preconditioning increases spinal excitability and voluntary activation during maximal plantar flexion contractions in men. Scand J Med Sci Sports. 2024;34(3):e14591. [77] DANTAS PAM, DA SILVA NOVAES J, PAZ CR, et al. Acute effect of Ischemic Preconditioning in different blood flow restriction compressions on the anaerobic performance of trained individuals. Nuevas Tend EN Educ Fis Deporte Recreacion. 2024;(54):721-727. [78] DE SANTANA VJ, DE OLIVEIRA DEANGELO CE, CURY SALEMI VM, et al. The Influence of Ischemic Preconditioning on Neuromuscular Performance. Rev Bras Med Esporte. 2021; 27(2):207-211. [79] GAO X, WANG A, FAN J, et al. The effect of ischemic preconditioning on repeated sprint cycling performance: a randomized crossover study. J Sports Med Phys Fitness. 2024;64(11):1147-1156. [80] GIBSON N, MAHONY B, TRACEY C, et al. Effect of ischemic preconditioning on repeated sprint ability in team sport athletes. J Sports Sci. 2015;33(11):1182-1188. [81] GRIFFIN PJ, HUGHES L, GISSANE C, et al. Effects of local versus remote ischemic preconditioning on repeated sprint running performance. J Sports Med Phys Fitness. 2019;59(2):187-194. [82] GUILHERME DA SILVA TELLES L, CRISTIANO CARELLI L, DUTRA BRÁZ I, et al. Effects of Ischemic Preconditioning as a Warm-Up on Leg Press and Bench Press Performance. J Hum Kinet. 2020;75:267-277. [83] HUANG BH, WANG TY, LU KH, et al. Effects of ischemic preconditioning on local hemodynamics and isokinetic muscular function. Isokinet Exerc Sci. 2020;28(1):73-81. [84] KATAOKA R, SONG JS, YAMADA Y, et al. The Impact of Different Ischemic Preconditioning Pressures on Pain Sensitivity and Resistance Exercise Performance. J Strength Cond Res. 2024;38(5):864-872. [85] KRAUS AS, PASHA EP, MACHIN DR, et al. Bilateral upper limb remote ischemic preconditioning improves peak anaerobic power. Open Sports Med J. 2015;9:1-6. [86] LIM AT, LIM J, GIRARD O, et al. Effect of ischemic preconditioning on badminton-specific endurance and subsequent changes in physical performance. Sci Sports. 2023; 38(1):102.e1-102.e7. [87] LISBÔA FD, TURNES T, CRUZ RS, et al. The time dependence of the effect of ischemic preconditioning on successive sprint swimming performance. J Sci Med Sport. 2017;20(5):507-511. [88] LOPES TR, SABINO-CARVALHO JL, FERREIRA THN, et al. Effect of Ischemic Preconditioning on the Recovery of Cardiac Autonomic Control From Repeated Sprint Exercise. Front Physiol. 2018;9:1465. [89] MAROCOLO M, MAROCOLO IC, DA MOTA GR, et al. Beneficial Effects of Ischemic Preconditioning in Resistance Exercise Fade Over Time. Int J Sports Med. 2016; 37(10):819-824. [90] MAROCOLO M, WILLARDSON JM, MAROCOLO IC, et al. Ischemic Preconditioning and Placebo Intervention Improves Resistance Exercise Performance. J Strength Cond Res. 2016;30(5):1462-1469. [91] PAIXÃO RC, DA MOTA GR, MAROCOLO M. Acute effect of ischemic preconditioning is detrimental to anaerobic performance in cyclists. Int J Sports Med. 2014;35(11): 912-915. [92] PARADIS-DESCHÊNES P, JOANISSE DR, BILLAUT F. Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Appl Physiol Nutr Metab. 2016; 41(9):938-944. [93] PARADIS-DESCHÊNES P, JOANISSE DR, BILLAUT F. Sex-Specific Impact of Ischemic Preconditioning on Tissue Oxygenation and Maximal Concentric Force. Front Physiol. 2017;7:674. [94] PATTERSON SD, BEZODIS NE, GLAISTER M, et al. The Effect of Ischemic Preconditioning on Repeated Sprint Cycling Performance. Med Sci Sports Exerc. 2015;47(8):1652-1658. [95] RODRIGUES AL, IDE BN, SASAKI JE, et al. Ischemic Preconditioning Improves the Bench-Press Maximal Strength in Resistance-Trained Men. Int J Exerc Sci. 2023;16(4):217-229. [96] SALAGAS A, TSOUKOS A, TERZIS G, et al. Effectiveness of either short-duration ischemic pre-conditioning, single-set high-resistance exercise, or their combination in potentiating bench press exercise performance. Front Physiol. 2022;13: 1083299. [97] SLYSZ JT, BURR JF. Enhanced Metabolic Stress Augments Ischemic Preconditioning for Exercise Performance. Front Physiol. 2018;9:1621. [98] SUTTER EN, MATTLAGE AE, BLAND MD, et al. Remote Limb Ischemic Conditioning and Motor Learning: Evaluation of Factors Influencing Response in Older Adults. Transl Stroke Res. 2019;10(4):362-371. [99] TANAKA D, SUGA T, TANAKA T, et al. Ischemic Preconditioning Enhances Muscle Endurance during Sustained Isometric Exercise. Int J Sports Med. 2016;37(8): 614-618. [100] TELLES LG, BILLAUT F, DE SOUZA RIBEIRO A, et al. Ischemic Preconditioning with High and Low Pressure Enhances Maximum Strength and Modulates Heart Rate Variability. Int J Environ Res Public Health. 2022;19(13):7655. [101] THOMPSON KMA, WHINTON AK, FERTH S, et al. Ischemic Preconditioning: No Influence on Maximal Sprint Acceleration Performance. Int J Sports Physiol Perform. 2018;13(8):986-990. [102] VANGSOE MT, NIELSEN JK, PATON CD. A Comparison of Different Prerace Warm-Up Strategies on 1-km Cycling Time-Trial Performance. Int J Sports Physiol Perform. 2020;15(8):1109-1116. [103] CHRISTIANSEN D, OLSEN CBL, KEHLER F, et al. Active Relative to Passive Ischemic Preconditioning Enhances Intense Endurance Performance in Well-Trained Men. Int J Sports Physiol Perform. 2022; 17(6):979-990. [104] COCKING S, LANDMAN T, BENSON M, et al. The impact of remote ischemic preconditioning on cardiac biomarker and functional response to endurance exercise. Scand J Med Sci Sports. 2017;27(10):1061-1069. [105] FOSTER GP, WESTERDAHL DE, FOSTER LA, et al. Ischemic preconditioning of the lower extremity attenuates the normal hypoxic increase in pulmonary artery systolic pressure. Respir Physiol Neurobiol. 2011;179(2-3):248-253. [106] GRIFFIN PJ, FERGUSON RA, GISSANE C, et al. Ischemic preconditioning enhances critical power during a 3 minute all-out cycling test. J Sports Sci. 2018;36(9):1038-1043. [107] HALLEY SL, PEELING P, BROWN H, et al. Repeat Application of Ischemic Preconditioning Improves Maximal 1,000-m Kayak Ergometer Performance in a Simulated Competition Format. J Strength Cond Res. 2020. doi: 10.1519/JSC.0000000000003748. [108] HALLEY SL, MARSHALL P, SIEGLER JC. Effect of ischemic preconditioning and changing inspired O2 fractions on neuromuscular function during intense exercise. J Appl Physiol (1985). 2019;127(6):1688-1697. [109] HITTINGER EA, MAHER JL, NASH MS, et al. Ischemic preconditioning does not improve peak exercise capacity at sea level or simulated high altitude in trained male cyclists. Appl Physiol Nutr Metab. 2015;40(1):65-71. [110] JESSEN S, ZEUTHEN M, SOMMER JEPPESEN J, et al. Active ischemic pre-conditioning does not additively improve short-term high-intensity cycling performance when combined with caffeine ingestion in trained young men. Eur J Sport Sci. 2024;24(6):693-702. [111] KIDO K, SUGA T, TANAKA D, et al. Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test. Physiol Rep. 2015;3(5):e12395. [112] KIDO K, SUGA T, TANAKA D, et al. Remote ischemic preconditioning accelerates systemic O2 dynamics and enhances endurance during work-to-work cycling exercise. Transl Sports Med. 2018;1(5):204-211. [113] KILDING AE, SEQUEIRA GM, WOOD MR. Effects of ischemic preconditioning on economy, VO2 kinetics and cycling performance in endurance athletes. Eur J Appl Physiol. 2018;118(12):2541-2549. [114] KJELD T, RASMUSSEN MR, JATTU T, et al. Ischemic preconditioning of one forearm enhances static and dynamic apnea. Med Sci Sports Exerc. 2014;46(1):151-155. [115] MACDOUGALL KB, MCCLEAN ZJ, MACINTOSH BR, et al. Ischemic Preconditioning, But Not Priming Exercise, Improves Exercise Performance in Trained Rock Climbers. J Strength Cond Res. 2023; 37(11):2149-2157. [116] MONTOYE AHK, MITCHINSON CJ, TOWNSEND OR, et al. Ischemic Preconditioning Does Not Improve Time Trial Performance in Recreational Runners. Int J Exerc Sci. 2020;13(6):1402-1417. [117] MORLEY WN, MURRANT CL, BURR JF. Ergogenic effect of ischemic preconditioning is not directly conferred to isolated skeletal muscle via blood. Eur J Appl Physiol. 2023; 123(8):1851-1861. [118] MOTA GR, RIGHTMIRE ZB, MARTIN JS, et al. Ischemic preconditioning has no effect on maximal arm cycling exercise in women. Eur J Appl Physiol. 2020;120(2):369-380. [119] MUÑOZ-GÓMEZ E, MOLLÀ-CASANOVA S, SEMPERE-RUBIO N, et al. Potential Benefits of a Single Session of Remote Ischemic Preconditioning and Walking in Sedentary Older Adults: A Pilot Study. Int J Environ Res Public Health. 2023;20(4):3515. [120] PANDORF Z, ERICKSON S, SCHOLTEN SD. Ischemic Preconditioning On Swimming Performance: An Exploration Into Practical Application. Med Sci Sports Exerc. 2023; 55(9):377. [121] SABINO-CARVALHO JL, LOPES TR, OBEID-FREITAS T, et al. Effect of Ischemic Preconditioning on Endurance Performance Does Not Surpass Placebo. Med Sci Sports Exerc. 2017;49(1):124-132. [122] TANAKA D, SUGA T, KIDO K, et al. Acute remote ischemic preconditioning has no effect on quadriceps muscle endurance. Transl Sports Med. 2020;3(4):314-320. [123] TER BEEK F, JOKUMSEN PS, SLOTH BN, et al. Ischemic Preconditioning Attenuates Rating of Perceived Exertion But Does Not Improve Maximal Oxygen Consumption or Maximal Power Output. J Strength Cond Res. 2022;36(9):2479-2485. [124] TOCCO F, MARONGIU E, GHIANI G, et al. Muscle ischemic preconditioning does not improve performance during self-paced exercise. Int J Sports Med. 2015;36(1):9-15. [125] TOMSCHI F, NIEMANN D, BLOCH W, et al. Ischemic Preconditioning Enhances Performance and Erythrocyte Deformability of Responders. Int J Sports Med. 2018; 39(8):596-603. [126] URBANSKI R, ASCHENBRENNER P, ZMIJEWSKI P, et al. Effect of Simultaneous Lower- and Upper-Body Ischemic Preconditioning on Lactate, Heart Rate, and Rowing Performance in Healthy Males and Females. Applied Sciences. 2024;14(9):3539. [127] WIGGINS CC, CONSTANTINI K, PARIS HL, et al. Ischemic Preconditioning, O2 Kinetics, and Performance in Normoxia and Hypoxia. Med Sci Sports Exerc. 2019;51(5):900-911. [128] ZHONG Z, DONG H, WU Y, et al. Remote ischemic preconditioning enhances aerobic performance by accelerating regional oxygenation and improving cardiac function during acute hypobaric hypoxia exposure. Front Physiol. 2022;13:950086. [129] 范紫菡,吴迎.缺血处理在运动训练中的应用:效果、机制及问题[J].中国运动医学杂志,2024,43(9):753-766. [130] CHEN Z, WU W, QIANG L, et al. The effect of ischemic preconditioning on physical fitness and performance: a meta-analysis in healthy adults. Eur J Appl Physiol. 2025;125(3):805-821. [131] 徐恺,殷明越,王然.中文体育类核心期刊元分析的选题和方法学问题[J].体育科学,2024,44(1):88-97. [132] PANG CY, YANG RZ, ZHONG A, et al. Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovasc Res. 1995;29(6):782-788. [133] SCHULZ R, POST H, VAHLHAUS C, et al. Ischemic preconditioning in pigs: a graded phenomenon: its relation to adenosine and bradykinin. Circulation. 1998;98(10):1022-1029. [134] MAROCOLO M, HOHL R, ARRIEL RA, et al. Ischemic preconditioning and exercise performance: are the psychophysiological responses underestimated? Eur J Appl Physiol. 2023;123(4):683-693. [135] SANTOS CERQUEIRA M, KOVACS D, MARTINS DE FRANÇA I, et al. Effects of Individualized Ischemic Preconditioning on Protection Against Eccentric Exercise-Induced Muscle Damage: A Randomized Controlled Trial. Sports Health. 2021; 13(6):554-564. [136] MARCORA SM, STAIANO W, MANNING V. Mental fatigue impairs physical performance in humans. J Appl Physiol (1985). 2009;106(3):857-864. [137] OKANO AH, FONTES EB, MONTENEGRO RA, et al. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med. 2015;49(18):1213-1218. [138] MEIRELES A, SOUZA HLR, ARRIEL RA, et al. Attenuation of Neuromuscular Fatigue by Ischemic Preconditioning with Moderate Cuff Pressure is Not Related to Muscle Oxygen Saturation in Men. Int J Exerc Sci. 2023;16(2):1025-1037. [139] HERROD PJJ, LUND JN, PHILLIPS BE. Time-efficient physical activity interventions to reduce blood pressure in older adults: a randomised controlled trial. Age Ageing. 2021;50(3):980-984. [140] ZHANG Y, KONG H, XU K, et al. Comment on “Does ischemic preconditioning enhance sports performance more than placebo or no intervention? A systematic review with meta-analysis”. J Sport Health Sci. 2025;14:101056. |
| [1] | 冯 强, 皮亦华, 黄华生, 黄德伦, 张 艳. 骨髓间充质干细胞移植治疗大鼠心肌梗死:急性和慢性运动的影响[J]. 中国组织工程研究, 2025, 29(23): 4868-4877. |
| [2] | 付常喜, 何瑞波, 马 刚, 朱 政, 马文超 .
不同运动模式影响心肌梗死致心力衰竭大鼠骨骼肌重塑的机制
[J]. 中国组织工程研究, 2025, 29(2): 221-230. |
| [3] | 孙玉马, 马文超, 付常喜. 粒细胞集落刺激因子联合高强度间歇运动预处理改善急性心肌梗死大鼠心脏重塑[J]. 中国组织工程研究, 2024, 28(31): 4987-4994. |
| [4] | 徐文杰, 谢旭东, 何瑞波, 马 刚, 彭 朋. 补充血管紧张素(1-7)联合运动疗法对肾性高血压大鼠心脏重塑的作用与机制[J]. 中国组织工程研究, 2024, 28(26): 4137-4144. |
| [5] | 张 敏, 娄 国, 付常喜. 有氧运动预适应改善骨髓间充质干细胞治疗急性心肌梗死的效果[J]. 中国组织工程研究, 2024, 28(25): 3988-3993. |
| [6] | 杨梦晓, 付常喜. 力量训练改善去卵巢模型大鼠骨损伤的作用机制[J]. 中国组织工程研究, 2024, 28(20): 3150-3156. |
| [7] | 刘 芃, 马 刚, 何瑞波, 彭 朋. 有氧运动干预慢性肾功能衰竭模型大鼠的肾脏纤维化[J]. 中国组织工程研究, 2023, 27(20): 3209-3215. |
| [8] | 陈子扬, 蒲 锐, 邓 爽, 袁凌燕. 外泌体对运动介导胰岛素抵抗类疾病的调控作用[J]. 中国组织工程研究, 2021, 25(25): 4089-4094. |
| [9] | 申晋波, 张 林. 急性力竭运动导致大鼠跟腱微损伤的超微结构变化及机制[J]. 中国组织工程研究, 2021, 25(8): 1190-1195. |
| [10] | 袁国强, 秦永生, 彭 朋. 高强度间歇运动对自发性高血压模型大鼠病理性心脏肥大的影响及机制[J]. 中国组织工程研究, 2020, 24(23): 3708-3715. |
根据运动持续时间(75 s)[45-46],
将纳入的研究分为无氧运动和有氧运动。在运动经验水平方面,最初尝试将参与者按照中国运动员等级标准划分,然而发现国际上绝大部分有关缺血预处理的原创研究并未提及参与者的运动成绩,而是描述他们的运动经验年限或者参加什么级别的比赛。因此将参与者的运动经验水平根据MCKAY等[47]的标准分为6个等级(0-5):久坐不动者、休闲活动者、发展或训练中者、高度训练或国家级运动员、精英或国际级运动员,以及世界级运动员。
参与者的年龄基于原始纳入研究提供的平均值进行分析。如果原始研究提供了年龄范围(例如18-35岁),则使用中位数;如果原始研究分别为缺血预处理组、假性缺血预处理组或空白对照组提供了单独的年龄,则通过将各组所有年龄相加并除以样本量来计算平均年龄。在数据提取过程中,如果遇到不完整的数据,通过电子邮件联系作者以获取完整数据集,例如当仅提供事后比较而未提供具体的测试前后数据时。此外,对于以图形形式呈现数据的研究,使用数据提取工具(WebPlotDigitizer-Copyright 2010-2024 Ankit Rohatgi)提取数据。在比较缺血预处理干预次数时(例如,测试前48 h干预1次、测试前24 h干预1次、测试前15 min干预1次,结果为3次缺血预处理干预 vs. 2次干预 vs. 1次干预 vs. 假性缺血预处理组或空白对照组),仅提取测试前15 min的干预(1次干预)数据,并与空白对照组或假性缺血预处理组数据进行比较[48]。
在提取计时试验数据时,部分研究提供了计时试验的总距离和速度。因此,使用公式“时间=距离/速度”计算时间。此外,数据以缺血预处理响应者和非响应者形式呈现,或以每位参与者个体数据而非整体组数据形式提供时,提取每位参与者的数据并重新计算平均值和标准差[44]。
1.6 数据分析
1.6.1 数据综合与效应量计算 在纳入的研究中,存在2种比较形式:
(1)组间后测比较:指缺血预处理组、空白对照组和假性缺血预处理组缺乏前测数据,仅直接比较后测结果(缺血预处理组 vs. 空白对照组,缺血预处理组 vs. 假性缺血预处理组);
(2)前后测变化值比较:指缺血预处理组、空白对照组和假性缺血预处理组同时具备前测和后测数据,计算各组的变化值后再比较组间变化幅度的差异。
为了建立统一的分析框架,对于第一种缺乏前测数据时,将其前测值设定为基线状态(均值=0,标准差=0),随后通过变化值进行组间差异比较。此外,作为敏感性分析,建立了仅使用后测数据的比较模型,以验证研究结论的稳健性。以下公式用于计算变化值和效应量(effect size,ES):
其中,Mpost 和 Mpre 分别表示 缺血预处理组、空白对照组和假性缺血预处理组的前测和后测表现的均值;SDpre和 SDpost 分别表示缺血预处理组、空白对照组和假性缺血预处理组的前测和后测表现的标准差,n1 和n2 分别表示缺血预处理组、空白对照组和假性缺血预处理组的前测和后测样本量;SDpooled是测量值的合并标准
差[49]。前后测相关系数 r设定为0.6,随后在0.5-0.9范围内进行敏感性分析。效应量使用经过小样本调整后的estimate。
当报告标准误(SE)时,使用公式计算标准差。效应量值分类为小(< 0.2)、中(0.2-0.49)和大(0.5-0.8)。异质性通过 I2、τ2 和 Q 检验进行评估,其中 I2 为 25%、50% 和 75%分别表示低、中和高异质性。Q检验在 P < 0.1时被认为显著。这些指标代表了剩余异质性的相对和绝对值,表明未解释的变异性中归因于剩余异质性的部分。计算预测区间以更好地考虑未来类似研究的潜在变异性。
1.6.2 多层次meta分析 鉴于纳入的缺血预处理研究中存在多组别和多效应量的特点,此研究采用多层次混合效应模型进行荟萃分析[50-53]。具体而言,模型将组间、组内以及对照组(缺血预处理 vs. 空白对照组,缺血预处理 vs. 假性缺血预处理组)效应量作为显式嵌套的随机截距(即组内效应量嵌套于比较中,比较嵌套于研究中)。随后,将该模型的拟合优度与传统的两层级和三层级模型进行比较,并根据赤池信息准则(AIC)和贝叶斯信息准则(BIC)确定最终模型[54]。效应量通过逆采样方差加权,以考虑层级内、对照组-研究组和研究组间的
方差[55]。
此研究采用聚类稳健方差估计方法[51],并进行小样本调整[56],以考虑研究内效应量之间的相关性。最初将研究内的相关性设置为0.6,对相关性0.4和0.8进行敏感性分析,元分析结果无差异。模型参数使用受限最大似然法进行估计。单个系数及其对应的置信区间(confidence interval,CI)通过t分布进行检验[54]。所有多层次元分析均使用R语言(版本4.3.0;R核心团队,维也纳,奥地利)中的metafor包进行[57],而聚类稳健方差估计和小样本调整方法则通过clubSandwich
包实现[58]。
1.6.3 亚组分析与元回归分析 亚组与回归分析用来探索异质性来源与影响因素。此研究对多个二分类调节变量进行了亚组分析,包括能量代谢特点、性别、对照组类型、参与者的训练经验以及缺血预处理组数,以探讨这些因素对缺血预处理效果的潜在影响。有关上述5个变量进行亚组分析的简要依据在表3中查阅[10,16,35,40-41,59-60]。
为了确定连续型变量是否对缺血预处理有潜在影响,此研究对年龄进行回归分析。回归分析基于混合效应模型,使用受限最大似然估计进行计算,与传统最大似然估计相比,其在估计随机效应时考虑了固定效应的存在,因此通常被认为更加稳健[61]。在评估回归预测关系时,分别拟合、比较了线性与非线性三次函数,并选择模型拟合优度最佳的模型[61]。
1.6.4 发表偏倚与证据质量评估 发表偏倚风险通过漏斗图结合Egger检验进行评估[62-63],其中P > 0.05表示不存在发表偏倚风险。
科学证据的质量根据GRADE手册的建议进行评估[64]。使用GRADEpro
GDT软件将证据质量评级为高、中、低或极低。缺血预处理干预对运动表现改善的证据质量根据偏倚风险、结果不一致性、证据间接性、结果不精确性和发表偏倚进行评估[65-66]。最初,证据被视为高质量,但根据以下标准进行降级[65-66]:①研究中的偏倚风险:存在一些担忧时降1级,高风险时降2级;②间接性:如果存在间接性(例如,人群、干预措施、对照和结果不一致)降1级,如果间接性源于多种来源则降2级;③发表偏倚:如果怀疑存在发表偏倚(Egger检验和原始描述)降1级;④不一致性:当研究间异质性(I2)较高(> 50%)或置信区间重叠较差时降1级;⑤不精确性:当比较的样本量< 800名参与者或效应无明确方向(P > 0.05)时降1级。如果同时满足不精确性的2个标准,则证据质量降2级。评估过程由第一作者与第二作者独立完成。
近年来,缺血预处理在运动表现提升领域逐渐成为研究热点,其潜在机制被认为涉及神经和体液调节、局部血流重分配与代谢适应等多重路径。然而,已有研究在干预方法、受试者特征和测量指标等方面存在显著异质性,导致效果不确定性较高。未来的发展趋势可能聚焦于安慰剂效应控制、标准化干预方案制定,以及结合运动模式与个体差异的精准干预策略构建。本研究通过系统评价与多层次荟萃分析,首次从缺血方案、运动经验、性别等多维度检验了缺血预处理效果的异质来源,厘清了其微弱但存在的运动表现提升效应及潜在影响因素,并确定在现有研究领域中其效应会显著的受到安慰剂效应(心理作用)的影响。相较于以往定性综述或单层次分析的研究,本研究在方法学深度与结果解释上具有一定的创新性和前沿性,为缺血预处理干预的临床应用及未来研究方向提供了较为系统的参考框架。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||