[1] MURPHY A, GOLDBERG S. Mechanical Complications of Myocardial Infarction. Am J Med. 2022;135(12):1401-1409.
[2] LATASA AÍ, RAMíREZ-VÉLEZ R, IZQUIERDO M, et al. Heart failure-related skeletal myopathy. Potential involvement of myokines. Rev Esp Cardiol (Engl Ed). 2021;74(12):1008-1012.
[3] FUENTES E, MOORE-CARRASCO R, DE ANDRADE PAES AM, et al. Role of Platelet Activation and Oxidative Stress in the Evolution of Myocardial Infarction. J Cardiovasc Pharmacol Ther. 2019;24(6):509-520.
[4] NERI M, FINESCHI V, DI PAOLO M, et al. Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Curr Vasc Pharmacol. 2015;13(1):26-36.
[5] QIU M, CHEN J, LI X, et al. Intersection of the Ubiquitin-Proteasome System with Oxidative Stress in Cardiovascular Disease. Int J Mol Sci. 2022;23(20):12197.
[6] CAIOZZO VJ, GIEDZINSKI E, BAKER M, et al. The radiosensitivity of satellite cells: cell cycle regulation, apoptosis and oxidative stress. Radiat Res. 2010;174(5):582-589.
[7] PATTI A, MERLO L, AMBROSETTI M, et al. Exercise-Based Cardiac Rehabilitation Programs in Heart Failure Patients. Heart Fail Clin. 2021;17(2):263-271.
[8] BRUM PC, BACURAU AV, CUNHA TF, et al. Skeletal myopathy in heart failure: effects of aerobic exercise training. Exp Physiol. 2014;99(4): 616-620.
[9] NEGRAO CE, MIDDLEKAUFF HR, GOMES-SANTOS IL, et al. Effects of exercise training on neurovascular control and skeletal myopathy in systolic heart failure. Am J Physiol Heart Circ Physiol. 2015;308(8): H792-802.
[10] TZANIS G, PHILIPPOU A, KARATZANOS E, et al. Effects of High-Intensity Interval Exercise Training on Skeletal Myopathy of Chronic Heart Failure. J Card Fail. 2017;23(1):36-46.
[11] 许纲.心力衰竭患者的骨骼肌肌病与抗阻运动锻炼[J].中国康复医学杂志,2010,25(7):716-720.
[12] FISHER S, SMART NA, PEARSON MJ. Resistance training in heart failure patients: a systematic review and meta-analysis. Heart Fail Rev. 2022;27(5):1665-1682.
[13] HSU WB, LIN SJ, HUNG JS, et al. Effect of resistance training on satellite cells in old mice - a transcriptome study : implications for sarcopenia. Bone Joint Res. 2022;11(2):121-133.
[14] GOMES MJ, MARTINEZ PF, PAGAN LU, et al. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget. 2017;8(12):20428-20440.
[15] MARTINEZ PF, OKOSHI K, ZORNOFF LA, et al. Echocardiographic detection of congestive heart failure in postinfarction rats. J Appl Physiol (1985). 2011;111(2):543-551.
[16] LIMA AR, MARTINEZ PF, DAMATTO RL, et al. Heart failure-induced diaphragm myopathy. Cell Physiol Biochem. 2014;34(2):333-345.
[17] 张艳,何瑞波,王庆博,等.不同负荷量有氧运动对肥胖大鼠骨骼肌炎症反应和胰岛素信号途径的影响及机制[J].中国组织工程研究,2023,27(8):1237-1244.
[18] IKEDO A, KIDO K, ATO S, et al. The effects of resistance training on bone mineral density and bone quality in type 2 diabetic rats. Physiol Rep. 2019;7(6):e14046.
[19] TANG L, ZHAO T, KANG Y, et al. MSTN is an important myokine for weight-bearing training to attenuate bone loss in ovariectomized rats. J Physiol Biochem. 2022;78(1):61-72.
[20] DE SOUSA NETO IV, DURIGAN JLQ, CARREIRO DE FARIAS JUNIOR G, et al. Resistance Training Modulates the Matrix Metalloproteinase-2 Activity in Different Trabecular Bones in Aged Rats. Clin Interv Aging. 2021;16:71-81.
[21] RIVERA-BROWN AM, FRONTERA WR. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training. PM R. 2012;4(11):797-804.
[22] RIEHLE C, BAUERSACHS J. Small animal models of heart failure. Cardiovasc Res. 2019;115(13):1838-1849.
[23] SOUZA LM, OKOSHI MP, GOMES MJ, et al. Effects of late aerobic exercise on cardiac remodeling of rats with small-sized myocardial infarction. Arq Bras Cardiol. 2021;116(4):784-792.
[24] SYLVIANA N, GOENAWAN H, SUSANTI Y, et al. Effect of different intensities aerobic exercise to cardiac angiogenesis regulation on wistar rats. Pol J Vet Sci. 2022;25(1):119-128.
[25] PAGAN LU, DAMATTO RL, GOMES MJ, et al. Low-intensity aerobic exercise improves cardiac remodelling of adult spontaneously hypertensive rats. J Cell Mol Med. 2019;23(9):6504-6507.
[26] GRANS CF, FERIANI DJ, ABSSAMRA ME, et al. Resistance training after myocardial infarction in rats: its role on cardiac and autonomic function. Arq Bras Cardiol. 2014;103(1):60-68.
[27] CAI M, WANG Q, LIU Z, et al. Effects of different types of exercise on skeletal muscle atrophy, antioxidant capacity and growth factors expression following myocardial infarction. Life Sci. 2018;213:40-49.
[28] LEE AP, ICE R, BLESSEY R, et al. Long-term effects of physical training on coronary patients with impaired ventricular function. Circulation. 1979;60(7):1519-1526.
[29] CONN EH, WILLIAMS RS, WALLACE AG. Exercise responses before and after physical conditioning in patients with severely depressed left ventricular function. Am J Cardiol. 1982;49(2):296-300.
[30] METTAUER B, ZOLL J, GARNIER A, et al. Heart failure: a model of cardiac and skeletal muscle energetic failure. Pflugers Arch. 2006;452(6): 653-666.
[31] SCHIAFFINO S, REGGIANI C, MURGIA M. Fiber type diversity in skeletal muscle explored by mass spectrometry-based single fiber proteomics. Histol Histopathol. 2020;35(3):239-246.
[32] SEILER M, BOWEN TS, ROLIM N, et al. Skeletal Muscle Alterations Are Exacerbated in Heart Failure With Reduced Compared With Preserved Ejection Fraction: Mediated by Circulating Cytokines. Circ Heart Fail. 2016;9(9):e3027.
[33] 杨立坤,傅力,牛燕媚.泛素-蛋白酶体在运动调节骨骼肌代谢中的作用研究进展[J].中国运动医学杂志,2018,37(10):865-868.
[34] BODINE SC, BAEHR LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014;307(6):E469-484.
[35] FOLETTA VC, WHITE LJ, LARSEN AE, et al. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch. 2011;461(3):325-335.
[36] 陈彩珍,卢健,季浏.不同运动方式对小鼠骨骼肌肌萎缩相关因子表达的影响[J].沈阳体育学院学报,2014,33(5):85-89.
[37] FINK J, SCHOENFELD BJ, NAKAZATO K. The role of hormones in muscle hypertrophy. Phys Sportsmed. 2018;46(1):129-134.
[38] ABREU P, KOWALTOWSKI AJ. Satellite cell self-renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption. J Cachexia Sarcopenia Muscle. 2020;11(6):1661-1676.
[39] KARIMI MAJD S, GHOLAMI M, BAZGIR B. PAX7 and MyoD Proteins Expression in Response to Eccentric and Concentric Resistance Exercise in Active Young Men. Cell J. 2023;25(2):135-142.
[40] CHODKOWSKA KA, CIECIERSKA A, MAJCHRZAK K, et al. Effect of β-hydroxy-β-methylbutyrate on miRNA expression in differentiating equine satellite cells exposed to hydrogen peroxide. Genes Nutr. 2018;13:e10.
|