中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (12): 3198-3216.doi: 10.12307/2026.701

• 组织构建相关数据分析 Date analysis of organization construction • 上一篇    

靶向炎症细胞因子治疗脑卒中的机制:开放全基因组关联研究大数据分析

程  乐1,朱才丰1,2,周冰原1,高大红3,崔晓雅2,李  静4,王雪伟1,杨高尚1,陈希阳1   

  1. 1安徽中医药大学,安徽省合肥市  230000;安徽中医药大学第二附属医院,2老年三科,3医务科,4脑病四科,安徽省合肥市  230000
  • 收稿日期:2025-04-16 接受日期:2025-08-17 出版日期:2026-04-28 发布日期:2025-10-09
  • 通讯作者: 朱才丰,博士,主任医师,安徽中医药大学,安徽省合肥市 230000;安徽中医药大学第二附属医院老年三科,安徽省合肥市 230000
  • 作者简介:程乐,男,1999年生,硕士,主要从事针灸临床与作用机制研究。
  • 基金资助:
    安徽省中医药传承创新科研项目(2024CCCX004):基于周楣声“灸感病理感传”规律的经穴感传灸疗体系构建,项目负责人:朱才丰;安徽省华佗中医药研究院科技重大专项“揭榜挂帅”项目(BZKZ2402):艾灸督脉组穴调控EC-CA1区神经环路突触可塑性机制研究,项目负责人:朱才丰;安徽省自然科学基金项目(2208085MH273):LncRNA RP4调控自噬促进艾灸督脉清除APP/PS1双转基因小鼠Aβ蛋白的机制研究,项目负责人:朱才丰;国家级重点专科项目-老年病优势专科建设项目,项目负责人:朱才丰

Mechanisms of stroke therapy targeting inflammatory cytokines: a big data analysis based on the IEU Open GWAS

Cheng Le1, Zhu Caifeng1, 2, Zhou Bingyuan1, Gao Dahong3, Cui Xiaoya2, Li Jing4, Wang Xuewei1, Yang Gaoshang1, Chen Xiyang1    

  1. 1Anhui University of Chinese Medicine, Hefei 230000, Anhui Province, China; 2Geriatrics Department III, 3Medical Affairs Department, 4Neurology Department IV, Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230000, Anhui Province, China
  • Received:2025-04-16 Accepted:2025-08-17 Online:2026-04-28 Published:2025-10-09
  • Contact: Zhu Caifeng, PhD, Chief physician, Anhui University of Chinese Medicine, Hefei 230000, Anhui Province, China; Geriatrics Department III, Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230000, Anhui Province, China
  • About author:Cheng Le, MS, Anhui University of Chinese Medicine, Hefei 230000, Anhui Province, China
  • Supported by:
    Anhui Province Traditional Chinese Medicine Inheritance and Innovation Research Project, No. 2024CCCX004 (to ZCF); Science and Technology Major Special Project of Anhui Huatuo Medical Research Institute - “Best Candidate Project,” No. BZKZ2402 (to ZCF); Anhui Province Natural Science Foundation, No. 2208085MH273 (to ZCF); National Key Specialty Project - Geriatrics Advantage Specialty Construction Project (to ZCF)

摘要:

文题释义:
孟德尔随机化:是一种基于遗传变异的因果推断方法,利用基因型作为工具变量模拟随机对照试验,以评估暴露因素与疾病间的因果关系。该方法通过遗传变异的自然随机分配特性,规避传统观察性研究中的混杂偏倚和反向因果干扰,广泛应用于验证生物标志物(如炎症因子)与复杂疾病(如脑卒中)的潜在关联。其核心假设包括工具变量与暴露强相关、独立于混杂因素且仅通过暴露影响结局,为机制研究和靶点筛选提供高可信度的遗传学证据。
炎症细胞因子:由免疫细胞或组织细胞分泌的小分子蛋白,通过调控免疫应答、细胞迁移及炎症反应参与疾病病理进程。在脑卒中发病机制中,特定炎症细胞因子(如白细胞介素6、CXCL10)可激活MAPK、Toll样受体等信号通路,介导血脑屏障破坏、神经炎症及氧化应激,加剧缺血性或出血性损伤。靶向抑制促炎因子或增强抗炎因子的表达,已被视为调控脑卒中后神经炎症、改善预后的潜在治疗策略,其作用机制涉及基因表达调控、蛋白质互作网络及药物分子结合能优化。

背景:炎症是脑卒中病理生理过程的关键组成部分,然而脑卒中与炎症之间的因果关系仍不清楚。
目的:采用孟德尔随机化及分子对接技术探索91种靶向炎症细胞因子的脑卒中治疗机制。
方法:从开放全基因组关联研究数据库(IEU Open GWAS,https://gwas.mrcieu.ac.uk/,由英国布里斯托大学医学研究委员会综合流行病学单位主办)中获得炎症细胞因子及脑卒中的数据,使用逆方差加权法作为主要研究方法进行两样本孟德尔随机化分析,评估91种炎症细胞因子与脑卒中之间的因果关系。随后基于孟德尔随机化研究结果进行了基因本体分析和京都基因与基因组通路分析,并构建了蛋白质-蛋白质相互作用网络。使用美国西奈山伊坎医学院建立的Enrichr数据库(http://amp.pharm.mssm.edu/Enrichr)和美国科罗拉多大学丹佛分校建立的药物特征数据库(http://tanlab.ucdenver.edu/dsigdb)进行脑卒中治疗药物预测,并使用AutoDock软件进行分子对接,通过Discovery Studio 2019对结果进行可视化。
结果与结论:①发现11种炎症细胞因子与全因脑卒中风险之间存在显著的因果关联;9种炎症细胞因子与缺血性脑卒中风险呈强相关;6种细胞因子与大动脉脑卒中风险显著相关;7种炎症细胞因子与心源性栓塞性脑卒中风险呈显著因果关系;12种细胞因子与小血管脑卒中风险显著相关;3种炎症细胞因子与脑内出血风险具有显著的因果关联;②基因本体分析和京都基因与基因组通路分析揭示,炎症细胞因子在代谢、炎症及免疫反应等方面对脑卒中具有重要影响;③通过蛋白质-蛋白质相互作用网络分析,筛选出与脑卒中密切相关的10种炎症细胞因子;④药物预测和分子对接结果表明,阿托伐他汀和氟氢可的松与关键核心靶点白细胞介素18和CCL3的结合力较高;⑤此次研究的数据来源于国际数据库中的欧洲人群,所获得的结果可为中国脑卒中的遗传流行病学研究提供参考;⑥此次研究阐明了炎症细胞因子与脑卒中之间的因果关系,揭示了炎症细胞因子治疗脑卒中的机制,为脑卒中的治疗提供了新思路。

关键词: 脑卒中, 炎症细胞因子, 孟德尔随机化, 因果关系, 药物预测, 分子对接, 逆方差加权法

Abstract: BACKGROUND: Inflammation is a crucial component of the pathophysiological process in stroke; however, the causal relationship between stroke and inflammation remains unclear. 
OBJECTIVE: To explore the mechanisms of stroke treatments targeting 91 inflammatory cytokines using Mendelian randomization and molecular docking techniques.
METHODS: Data on inflammatory cytokines and stroke were obtained from the IEU Open GWAS database (https://gwas.mrcieu.ac.uk/) hosted by the Medical Research Council Comprehensive Epidemiology Unit at the University of Bristol in the United Kingdom. Two-sample Mendelian randomization analysis was performed using the inverse variance weighting method to assess the causal relationship between 91 inflammatory cytokines and stroke. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were then conducted based on the results of Mendelian randomization, and protein-protein interaction networks were constructed. Stroke drug prediction was performed using the Enrichr database (http://amp.pharm.mssm.edu/Enrichr) established by the Icahn School of Medicine at Mount Sinai and the Drug Repurposing Hub database (http://tanlab.ucdenver.edu/dsigdb) established by the University of Colorado Denver. Molecular docking was performed with AutoDock software, and the results were visualized using Discovery Studio 2019. 
RESULTS AND CONCLUSION: (1) We identified 11 inflammatory cytokines with significant causal associations with the overall stroke risk; 9 cytokines were strongly associated with ischemic stroke risk; 6 cytokines were significantly related to large artery stroke risk; 7 cytokines exhibited a significant causal relationship with cardioembolic stroke risk; 12 cytokines were significantly related to small vessel stroke risk; and 3 cytokines were significantly associated with the risk of intracerebral hemorrhage. (2) Gene Ontology and Kyoto Gene and Genome Pathway analyses revealed that inflammatory cytokines play significant roles in metabolism, inflammation, and immune responses in stroke. (3) Protein-protein interaction network analysis identified 10 inflammatory cytokines closely linked to stroke. (4) Drug prediction and molecular docking results indicated that atorvastatin and fludrocortisone had high binding affinity to key core targets interleukin-18 and CCL3. (5) The data for this study were sourced from the European population in international databases, and the findings provide valuable insights for genetic epidemiological research on stroke in China. (6) This study clarifies the causal relationship between inflammatory cytokines and stroke, unveiling the mechanisms of inflammatory cytokine therapy in stroke treatment and offering novel therapeutic strategies for stroke.

Key words: stroke, inflammatory cytokines, Mendelian randomization, causality, drug prediction, molecular docking, inverse variance weighting method

中图分类号: