中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (14): 3557-3567.doi: 10.12307/2026.108

• 组织工程口腔材料 tissue-engineered oral materials • 上一篇    下一篇

正畸上颌牙列远中移动的三维有限元分析

谢丽丽1,张  昊1,2,寻春雷3   

  1. 1河北省人民医院,河北省石家庄市   050017;2河北医科大学,河北省石家庄市   050017;3北京大学口腔医院,北京市   100081
  • 收稿日期:2025-05-19 接受日期:2025-06-05 出版日期:2026-05-18 发布日期:2025-09-10
  • 通讯作者: 谢丽丽,硕士,副主任医师,硕士生导师,河北省人民医院,河北省石家庄市 050017
  • 作者简介:谢丽丽,女,1972年生,河北省石家庄市人,汉族,硕士,副主任医师,硕士生导师,主要从事口腔正畸研究。
  • 基金资助:
    2025年度政府资助临床医学优秀人才项目(ZF2025010),项目负责人:谢丽丽

Three-dimensional finite element analysis on distalization of orthodontic maxillary dentition

Xie Lili1, Zhang Hao1, 2, Xun Chunlei3   

  1. 1Hebei Provincial People’s Hospital, Shijiazhuang 050017, Hebei Province, China; 2Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; 3School of Stomatology, Peking University, Beijing 100081, China
  • Received:2025-05-19 Accepted:2025-06-05 Online:2026-05-18 Published:2025-09-10
  • Contact: Xie Lili, MS, Associate chief physician, Master’s supervisor, Hebei Provincial People’s Hospital, Shijiazhuang 050017, Hebei Province, China
  • About author:Xie Lili, MS, Associate chief physician, Master’s supervisor, Hebei Provincial People’s Hospital, Shijiazhuang 050017, Hebei Province, China
  • Supported by:
    2025 Government-funded Clinical Medicine Excellent Talent Project, No. ZF2025010 (to XLL)

摘要:

文题释义:
上颌牙列远中移动:上颌牙列远中移动的必要前提是牙列远中有充足的骨量,并且第二磨牙需完全萌出。上颌牙列远中移动的适应证:牙列轻度拥挤或牙齿前突;牙列严重拥挤或牙齿前突,经减数矫治后前牙仍唇倾或面型仍较突;牙齿前突的二次正畸;中线不齐;骨性Ⅲ类错牙合正畸-正颌联合治疗术前正畸去代偿,需少量调整切牙唇倾度。
三维有限元分析:能够较准确模拟人体组织复杂的几何形状,通过参数设定模拟物体的材料属性和受力状态,具有高效精确的力学特点,已广泛应用于口腔生物力学研究领域,是解决牙齿移动问题的关键性技术。

背景:上颌牙列远中移动是临床常用的非拔牙矫治策略,但临床实现效率低,传统方式易产生支抗丢失和磨牙往复移动,因此,国内外学者不断探索新的治疗途径,并应用有限元分析研究远中移动的力学机制。
目的:建立上颌复合体及矫治器三维有限元模型,对比两种远中移动上颌牙列方式的牙齿初始位移和牙周膜应力变化。
方法:选择个别正常牙合成人志愿者1例,拍摄颌面部锥形束CT图片,据此建立上颌骨-上牙列-牙周膜-弓丝-托槽-牵引钩-微种植体支抗钉的三维有限元模型,在此模型基础上设置2组加载模式,分别为A组(整体远移2 N组)、B组(推簧分步远移2 N组),每个组别中分别设置3,5,7 mm的牵引钩高度,即A1、A2、A3、B1、B2、B3共6组工况。其中A组模型(A1、A2、A3)模拟支抗钉整体远移方式,B组模型(B1、B2、B3)模拟支抗钉-推簧分步远移方式,A组、B组中微种植体支抗钉颈部加载力值均为2 N,在有限元软件中分析计算牙齿水平向、矢状向和垂直向的初始位移变化以及牙周膜应力分布。
结果与结论:①两组加载方式均实现了上颌牙列的远中移动,但移动量和效率不同。在牵引钩高度相同情况下,与A组整体远移的加载方式相比,B组推簧分步远移的加载方式使磨牙实现了更大的远中移动量。在整体远移时,磨牙远中倾斜移动,当牵引钩高度为5 mm时位移量最大;在推簧分步远移时,磨牙呈整体远中移动趋势,当牵引钩高度为7 mm时位移量最大,但切牙有唇倾趋势。在牵引钩高度相同条件下,B组磨牙远移量均高于A组,B2组牙周膜范式等效应力值最大,为31 kPa。②应用微种植体支抗辅助整体远移上颌牙列时,在5 mm牵引钩高度时远移效率表达最高;应用微种植体支抗-推簧分步远移上颌牙列时,在7 mm牵引钩高度时远移效率表达最高;在不同牵引钩高度下,构建的颊侧微种植体-推簧-牵引钩系统均较整体远移方式的效率更高,磨牙倾向整体远移。 
https://orcid.org/0009-0009-7968-3337(谢丽丽) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 上颌牙列">, 远中移动">, 微种植体支抗">, 三维有限元分析">, 生物力学研究">, 牙周膜

Abstract: BACKGROUND: Distalization of maxillary dentition is a commonly used non-extraction correction strategy in clinical practice, but the clinical implementation efficiency is low. The traditional method is prone to anchorage loss and reciprocating of molars. Therefore, domestic and foreign scholars continue to explore new treatment approaches and use finite element analysis to study the mechanical mechanism of distalization. 
OBJECTIVE: To establish a three-dimensional finite element model of the maxillary complex and orthodontic appliance, and compare the initial displacement of teeth and the stress changes of periodontal ligament in two distalization methods of maxillary dentition. 
METHODS: One adult volunteer with normal occlusion was selected, and maxillofacial cone beam CT images were taken. Based on this, a three-dimensional finite element model of maxillary bone-upper dentition-periodontal ligament-archwire-bracket-traction hook-micro-implant anchorage nail was established. Based on this model, two groups of loading modes were set, namely group A (overall distalization 2 N group) and group B (step-by-step distalization 2 N group with push spring). In each group, the traction hook height was set to 3, 5, and 7 mm, respectively, that is, A1, A2, A3, B1, B2, and B3, a total of 6 working conditions. The models in group A (A1, A2, and A3) simulated the overall distalization of the anchor pin, and the models in group B (B1, B2, and B3) simulated the step-by-step distalization of the anchor pin and the push spring. The loading force of the neck of the micro-implant anchor pin in groups A and B was 2 N. The initial displacement changes of the teeth in the horizontal, sagittal, and vertical directions and the stress distribution of the periodontal membrane were analyzed and calculated using finite element software.  
RESULTS AND CONCLUSION: (1) Both loading methods achieved the distalization of the maxillary dentition, but the movement amount and efficiency were different. Under the same traction hook height, the loading method of the push spring step-by-step distalization in group B achieved a greater distalization of the molars compared with the loading method of the overall distalization in group A. During the overall distalization, the molars moved distally with an inclination, and the displacement was the largest when the traction hook height was 5 mm; during the step-by-step distalization of the push spring, the molars showed an overall distalization trend, and the displacement was the largest when the traction hook height was 7 mm, but the incisors had a labial inclination trend. Under the same traction hook height, the distal displacement of the molars in group B was higher than that in group A, and the equivalent stress value of the periodontal ligament paradigm in group B2 was the largest, which was 31 kPa. (2) When the micro-implant support was used to assist the overall distal displacement of the maxillary dentition, the distal displacement efficiency was highest at a traction hook height of 5 mm; when the micro-implant support-push spring was used to step-by-step distal displacement of the maxillary dentition, the distal displacement efficiency was highest at a traction hook height of 7 mm; at different traction hook heights, the constructed buccal micro-implant-push spring-traction hook system was more efficient than the overall distal displacement method, and the molars tended to be distalized as a whole. 


Key words: ">maxillary dentition">, distalization">, temporary anchorage">, three-dimensional finite element analysis">, biomechanical research">, periodontal ligament

中图分类号: