中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (14): 3504-3514.doi: 10.12307/2026.631

• 组织工程口腔材料 tissue-engineered oral materials • 上一篇    下一篇

不同结构及孔隙率多孔钽种植体力学性能的有限元分析

王睿浩1,2,胡小华3,王玉娇1,2,令狐敏1,2,杨晓红1   

  1. 遵义医科大学附属口腔医院,1口腔修复科,3口腔颌面外科,贵州省遵义市  563006;2遵义医科大学基础药理教育部重点实验室,贵州省遵义市  563006
  • 收稿日期:2025-04-09 接受日期:2025-06-15 出版日期:2026-05-18 发布日期:2025-09-06
  • 通讯作者: 杨晓红,博士,教授,遵义医科大学附属口腔医院口腔修复科,贵州省遵义市 563006
  • 作者简介:王睿浩,男,1998年生,重庆市人,汉族,遵义医科大学在读硕士,主要从事多孔钽种植体的研究。
  • 基金资助:
    遵义医科大学研究生科研基金立项课题项目(ZYK202),项目负责人:令狐敏

Finite element analysis of mechanical properties of porous tantalum implants with different structures and porosities

Wang Ruihao1, 2, Hu Xiaohua3, Wang Yujiao1, 2, Linghu Min1, 2, Yang Xiaohong1   

  1. 1Department of Prosthodontics, 3Department of Maxillofacial Surgery, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563006, Guizhou Province, China; 2Key Laboratory of Basic Pharmacology, Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
  • Received:2025-04-09 Accepted:2025-06-15 Online:2026-05-18 Published:2025-09-06
  • Contact: Yang Xiaohong, MD, Professor, Department of Prosthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563006, Guizhou Province, China
  • About author:Wang Ruihao, Master candidate, Department of Prosthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563006, Guizhou Province, China; Key Laboratory of Basic Pharmacology, Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
  • Supported by:
    Project of Postgraduate Research Fund of Zunyi Medical University, No. ZKY202 (to LHM)

摘要:

文题释义:
孔隙率:指多孔材料内部孔隙部分体积与外部形态体积的比值,通常使用百分比表示,对材料的性能产生显著影响。材料学中常通过调整孔隙率改变材料的抗压强度、弹性模量,以满足各种需求。
有限元分析:是一种计算机仿真实验方法,通过将模型分割为若干单元,并录入各项物理、化学特性数据到分析系统中,利用相应公式进行自动化模拟运算,从而对复杂的物理系统进行分析和预测所需结果。有限元分析广泛应用于工程、材料科学、物理学等领域,能够为设计与实践提供指导和数据参考,进行结果预测分析,显著降低试错成本同时提高设计的可行性。

背景:多孔钽可能是替换钛及钛合金的一种理想口腔种植材料,但其最佳结构及孔隙率仍有待探讨。
目的:通过有限元分析方法探寻多孔钽的仿生骨小梁、钻石晶格、立方体晶格结构中最接近颌骨弹性模量的孔隙率,在得到的3组弹性模量优选组中进一步探索最有利于降低骨应力及促进种植初期细胞黏附的结构。
方法:采用nTop软件分别制作仿生骨小梁、钻石晶格、立方体晶格结构的60%,70%,80%孔隙率模型,共9组,使用Ansys软件进行静压力模拟,记录施力面沿施力方向的形变量,计算弹性模量,选出3种结构中弹性模量最接近下颌骨皮质的孔隙率。设计了中部为多孔支架、上下段实心螺丝结构的种植体,并模拟植入后受力,分析3组最优结构种植体骨植入后受力下的颌骨内应力,探寻在相近弹性模量下最有利于降低骨内应力的一组多孔支架结构。使用Ansys软件对3组弹性模量优选组进行流体力学仿真模拟,探讨最利于细胞早期黏附、成骨的结构。
结果与结论:①静压力模拟分析显示,钻石晶格60%、仿生骨小梁70%和立方体晶格80%是各结构不同孔隙率中弹性模量最接近下颌骨皮质的分组。钽种植体植入后负载下的静压力分析显示,仿生骨小梁70%组骨松质应力低于钻石晶格60%组、立方体晶格80%组,钻石晶格60%组骨皮质应力高于立方体晶格80%组。②流体力学分析显示,立方体晶格80%组支架附近低流速区域体积最大,仿生骨小梁70%组支架附近低流速区域体积略低于立方体晶格80%组,钻石晶格60%组支架附近低流速区体积最小。引入离散相微粒模拟细胞运动后发现,仿生骨小梁70%组虽支架附近低流速区体积略小于立方体晶格80%组,但支架附近低流速区有最多的粒子停留,最有利于早期细胞黏附及成骨。
https://orcid.org/0009-0009-1618-7141(王睿浩)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 有限元分析">, 支架结构">, 种植体">, ">, 弹性模量">, 流体力学">, 孔隙率

Abstract: BACKGROUND: Porous tantalum may be an ideal oral implant material to replace titanium and titanium alloys, but its optimal structure and porosity remain to be explored.
OBJECTIVE: To identify the porosity of porous tantalum with a trabecular, diamond, and cubic structure that most closely matches the elastic modulus of the jawbone using finite element analysis. Among the three groups with the most optimal elastic modulus, we further explored the structure most conducive to reducing bone stress and promoting initial cell adhesion during implantation.
METHODS: Using nTop software, we created models of the trabecular, diamond, and cubic structures with 60%, 70%, and 80% porosity, resulting in a total of nine groups. Ansys software was employed for static pressure simulation to record the deformation along the direction of applied force. The elastic modulus was calculated, and the optimal group for each structure was selected based on the closest match to the elastic modulus of the jawbone. A dental implant design with a porous scaffold in the middle and solid screw segments at the top and bottom was simulated for implantation, and the stress after implantation was simulated. The internal stress of the mandible under the stress after bone implantation of the three groups of optimal structure implants was analyzed to explore a group of porous scaffold structures that are most conducive to reducing the internal stress of the bone under similar elastic modulus. The three groups of optimal elastic modulus groups were simulated by fluid mechanics using Ansys software to explore the structure that is most conducive to early cell adhesion and osteogenesis.
RESULTS AND CONCLUSION: (1) Static pressure simulations revealed that the diamond 60%, trabecular 70%, and cubic 80% groups had the closest elastic modulus to that of the mandibular cortical bone among the different porosities of each structure. Static pressure analysis under load after tantalum implant implantation showed that the cancellous stress of the trabecular 70% group was lower than that of the diamond 60% group and cubic 80% group, and the cortical stress of the diamond 60% group was higher than that of the cubic 80% group. (2) Fluid mechanics analysis showed that the volume of the low-velocity area near the scaffold of the cubic 80% group was the largest, the volume of the low-velocity area near the scaffold of the trabecular 70% group was slightly lower than that of the cubic 80% group, and the volume of the low-velocity area near the scaffold of the diamond 60% group was the smallest. After introducing discrete phase particles to simulate cell movement, it was found that although the volume of the low-velocity area near the scaffold of the trabecular 70% group was slightly smaller than that of the cubic 80% group, the low-velocity area near the scaffold had the most particles staying, which was most conducive to early cell adhesion and osteogenesis.

Key words: finite element analysis">, scaffold structure">, implant, tantalum">, elastic modulus">, fluid mechanics">, porosity

中图分类号: