[1] JENSEN LK, HARTMANN KT, WITZMANN F, et al. Bone infection evolution. Injury. 2024; 55 Suppl 6:111826.
[2] 吴永军,赵猛.感染性骨缺损的治疗现状[J].生物骨科材料与临床研究,2022, 19(4):86-90.
[3] TANG RH, YANG J, FEI J. New perspectives on traumatic bone infections. Chin J Traumatol. 2020;23(6):314-318.
[4] WILLIAMS DF. Biocompatibility pathways and mechanisms for bioactive materials: The bioactivity zone. Bioact Mater. 2021;26(10):306-322.
[5] WANG G, CUI Y, LIU H, et al. Antibacterial peptides-loaded bioactive materials for the treatment of bone infection. Colloids Surf B Biointerfaces. 2023;225:113255.
[6] NINKOV A, FRANK JR, MAGGIO LA. Bibliometrics: Methods for studying academic publishing. Perspect Med Educ. 2022;11(3):173-176.
[7] ARCIOLA CR, CAMPOCCIA D, MONTANARO L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16(7):397-409.
[8] YANG Y, CHU L, YANG S, et al. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater. 2018;1(79):265-275.
[9] KAVANAGH N, RYAN EJ, WIDAA A, et al. Staphylococcal Osteomyelitis: Disease Progression, Treatment Challenges, and Future Directions. Clin Microbiol Rev. 2018; 31(2):e00084-17.
[10] RAPHEL J, HOLODNIY M, GOODMAN SB, et al. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials. 2016;84:301-314.
[11] LINDFORS N, GEURTS J, DRAGO L, et al. Antibacterial Bioactive Glass, S53P4, for Chronic Bone Infections - A Multinational Study. Adv Exp Med Biol. 2017;971:81-92.
[12] INZANA JA, SCHWARZ EM, KATES SL, et al.
Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials. 2016;81:58-71.
[13] BARI A, BLOISE N, FIORILLI S, et al. Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomater. 2017;55:493-504.
[14] WU C, ZHOU Y, XU M, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 2013;34(2):422-433.
[15] HO-SHUI-LING A, BOLANDER J, RUSTOM LE, et al. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143-162.
[16] CHEN ZY, GAO S, ZHANG YW, et al. Antibacterial biomaterials in bone tissue engineering. J Mater Chem B. 2021;9(11): 2594-2612.
[17] XIE H, LIU Y, AN H, et al. Recent advances in prevention, detection and treatment in prosthetic joint infections of bioactive materials. Front Bioeng Biotechnol. 2022; 10:1053399.
[18] WANG J, LIU M, YANG C, et al. Biomaterials for bone defect repair: Types, mechanisms and effects. Int J Artif Organs. 2024;47(2):75-84.
[19] ALMULHIM KS, SYED MR, ALQAHTANI N,
et al. Bioactive Inorganic Materials for Dental Applications: A Narrative Review. Materials (Basel). 2022;15(19):6864.
[20] Islam MM, Shahruzzaman M, Biswas S, et.al. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater. 2020;5(1):164-183.
[21] VALENCIA ZAPATA ME, MINA HERNANDEZ JH, GRANDE TOVAR CD, et al. Novel Bioactive and Antibacterial Acrylic Bone Cement Nanocomposites Modified with Graphene Oxide and Chitosan. Int J Mol Sci. 2019;20(12):2938.
[22] RATHER MA, GUPTA K, MANDAL M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021;52(4):1701-1718.
[23] LV X, WANG L, MEI A, et al. Recent Nanotechnologies to Overcome the Bacterial Biofilm Matrix Barriers. Small. 2023;19(6):e2206220.
[24] GHOLAP AD, ROJEKAR S, KAPARE HS, et al. Chitosan scaffolds: Expanding horizons in biomedical applications. Carbohydr Polym. 2024;323:121394.
[25] JIN Y, LIU H, CHU L, et al. Initial therapeutic evidence of a borosilicate bioactive glass (BSG) and Fe3O4 magnetic nanoparticle scaffold on implant-associated Staphylococcal aureus bone infection. Bioact Mater. 2024; 8(40):148-167.
[26] FAN F, LIU Y, LIU Y, et al. Candida albicans biofilms: antifungal resistance, immune evasion, and emerging therapeutic strategies. Int J Antimicrob Agents. 2022; 60(5-6):106673.
[27] AMNA T, HASSAN MS. Nanofibers and Nanotextured Materials: Design Insights, Bactericidal Mechanisms and Environmental Advances. Nanomaterials (Basel). 2023; 13(21):2891.
[28] 王兆飞,何国云,田方灿,等.活性屏等离子表面改性技术制备纳米银涂层不锈钢的体外抗菌性能[J].中国组织工程研究,2024,28(22):3464-3471.
[29] FRANCO D, CALABRESE G, GUGLIELMINO SPP, et al. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application. Microorganisms. 2022;10(9): 1778.
[30] XU L, FANG J, PAN J, et al. Zinc finger-inspired peptide-metal-phenolic nanointerface enhances bone-implant integration under bacterial infection microenvironment through immune modulation and osteogenesis promotion. Bioact Mater. 2024;41:564-576.
[31] LI Z, ZHAO Y, WANG Z, et al. Engineering Multifunctional Hydrogel-Integrated 3D Printed Bioactive Prosthetic Interfaces for Osteoporotic Osseointegration. Adv Healthc Mater. 2022;11(11):e2102535.
[32] GOVONI M, LAMPARELLI EP, CIARDULLI MC, et al. Demineralized bone matrix paste formulated with biomimetic PLGA microcarriers for the vancomycin hydrochloride controlled delivery: Release profile, citotoxicity and efficacy against S. aureus. Int J Pharm. 2020;582:119322.
[33] MOGHANIAN A, PORTILLO-LARA R, SHIRZAEI SANI E, et al. Synthesis and characterization of osteoinductive visible light-activated adhesive composites with antimicrobial properties. J Tissue Eng Regen Med. 2020; 14(1):66-81.
[34] ZHAO Y, LI J, LIU L, et al. Zinc-Based Tannin-Modified Composite Microparticulate Scaffolds with Balanced Antimicrobial Activity and Osteogenesis for Infected Bone Defect Repair. Adv Healthc Mater. 2023;12(20): e2300303.
[35] QIAN H, LEI T, HUA L, et al. Fabrication, bacteriostasis and osteointegration properties researches of the additively-manufactured porous tantalum scaffolds loading vancomycin. Bioact Mater. 2023; (24):450-462.
[36] HUANG H, QIANG L, FAN M, et al.
3D-printed tri-element-doped hydroxyapatite/ polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration. Bioact Mater. 2023; 4(31):18-37.
[37] CÁMARA-TORRES M, DUARTE S, SINHA R, et al. 3D additive manufactured composite scaffolds with antibiotic-loaded lamellar fillers for bone infection prevention and tissue regeneration. Bioact Mater. 2020; 6(4):1073-1082.
[38] MAKSOUD FJ, VELÁZQUEZ DE LA PAZ MF, HANN AJ, et al. Porous biomaterials for tissue engineering: a review. J Mater Chem B. 2022;10(40):8111-8165.
[39] QI J, YU T, HU B, et al. Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine. Int J Mol Sci. 2021; 22(19):10233.
[40] CARVALHO MS, SILVA JC, UDANGAWA RN, et al. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. Mater Sci Eng C. 2019;99:479.
[41] LEE J, HUH SJ, SEOK JM, et al. Surface engineering of 3D-printed scaffolds with minerals and a pro-angiogenic factor for vascularized bone regeneration. Acta Biomater. 2022;140(3):730-744.
[42] KUMAR DEWANGAN V, SAMPATH KUMAR TS, DOBLE M, et al. Fabrication of injectable antibiotic-loaded apatitic bone cements with prolonged drug delivery for treating post-surgery infections. J Biomed Mater Res A. 2023;111(11):1750-1767.
[43] 龙琳,朱琳,汤惠茗,等.金属纳米材料对细菌耐药的影响及其机制研究进展[J].中国环境科学,202545(5):2857-2864.
[44] ZENG J, GU C, GENG X, et al. Combined photothermal and sonodynamic therapy using a 2D black phosphorus nanosheets loaded coating for efficient bacterial inhibition and bone-implant integration. Biomaterials. 2023;297:122122.
[45] ZHANG X, LI Q, LI L, et al. Bioinspired Mild Photothermal Effect-Reinforced Multifunctional Fiber Scaffolds Promote Bone Regeneration. ACS Nano. 2023;17(7): 6466-6479.
[46] ZHANG J, YE X, LI W, et al. Copper-containing chitosan-based hydrogels enabled 3D-printed scaffolds to accelerate bone repair and eliminate MRSA-related infection. Int J Biol Macromol. 2023;(240):124463.
[47] SCHWARTZMAN JD, MCCALL M, GHATTAS Y, et al. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials. 2024;311:122683.
[48] HAGEMAN KA, BLATT RL, KUENNE WA, et al. Effect of pH and hydroxyapatite-like layer formation on the antibacterial properties of borophosphate bioactive glass incorporated poly(methyl methacrylate) bone cement. Front Bioeng Biotechnol. 2024;18(12):1462795. |