[1] PÉREZ-MACHADO G, BERENGUER-PASCUAL E, BOVEA-MARCO M, et al. From genetics to epigenetics to unravel the etiology of adolescent idiopathic scoliosis. Bone. 2020; 140:115563.
[2] DE KLEUVER M, FARAJ SS, HAANSTRA TM, et al. The Scoliosis Research Society adult spinal deformity standard outcome set. Spine Deform. 2021;9(5):1211-1221.
[3] ZHANG H, HUANG C, WANG D, et al. Artificial Intelligence in Scoliosis: Current Applications and Future Directions. J Clin Med. 2023;12(23):7382.
[4] NEGRINI S, YASKINA M, DONZELLI S, et al. Puberty changes the natural history of idiopathic scoliosis: three prediction models for future radiographic curve severity from 1563 consecutive patients. Eur Spine J. 2024;33(10):3767-3775.
[5] DE MENDONÇA RGM, SAWYER JR, KELLY DM. Complications after surgical treatment of adolescent idiopathic scoliosis. Orthop Clin North Am. 2016;47(2):395-403.
[6] DUNN J, HENRIKSON NB, MORRISON CC, et al. Screening for adolescent idiopathic scoliosis: evidence report and systematic review for the US preventive services task force. JAMA. 2018;319(2):173-187.
[7] BUNNELL WP. The natural history of idiopathic scoliosis before skeletal maturity. Spine. 1986;11(8):773-776.
[8] 王海星, 田雪晴, 游茂, 等. 人工智能在医疗领域应用现状、问题及建议[J]. 卫生软科学,2018,32(5):3-5+9.
[9] 张婕. 人工智能在医学中的应用现状与展望[J]. 数字通信世界,2022(12):172-174.
[10] CHEN W, KHODAEI M, REFORMAT M, et al. Validity of a fast automated 3d spine reconstruction measurements for biplanar radiographs: SOSORT 2024 award winner. Eur Spine J. 2024. doi: 10.1007/s00586-024-08375-7.
[11] CHOI RY, COYNER AS, KALPATHY-CRAMER J, et al. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14.
[12] ALTAF F, DRINKWATER J, PHAN K, et al. Systematic review of school scoliosis screening. Spine Deform. 2017;5(5): 303-309.
[13] MONTGOMERY F, WILLNER S. Screening for idiopathic scoliosis: Comparison of 90 cases shows less surgery by early diagnosis. Acta Orthop Scand. 1993;64(4):456-458.
[14] CUNDY TP, ANTONIOU G, SUTHERLAND LM, et al. Serum titanium, niobium, and aluminum levels after instrumented spinal arthrodesis in children. Spine. 2013;38(7): 564-570.
[15] ZHANG T, ZHU C, ZHAO Y, et al. Deep learning model to classify and monitor idiopathic scoliosis in adolescents using a single smartphone photograph. JAMA Netw Open. 2023;6(8):e2330617-e.
[16] JAREMKO J, DELORME S, DANSEREAU J, et al. Use of neural networks to correlate spine and rib deformity in scoliosis. Comput Methods Biomech Biomed Engin. 2000; 3(3):203-213.
[17] RAMIREZ L, DURDLE NG, RASO VJ, et al. A support vector machines classifier to assess the severity of idiopathic scoliosis from surface topography. IEEE Trans Inf Technol Biomed. 2006;10(1):84-91.
[18] YANG J, ZHANG K, FAN H, et al. Development and validation of deep learning algorithms for scoliosis screening using back images. Commun Biol. 2019;2(1):390.
[19] WATANABE K, AOKI Y, MATSUMOTO M. An application of artificial intelligence to diagnostic imaging of spine disease: estimating spinal alignment from Moiré images. Neurospine. 2019;16(4):697.
[20] NEGRINI F, CINA A, FERRARIO I, et al. Developing a new tool for scoliosis screening in a tertiary specialistic setting using artificial intelligence: a retrospective study on 10,813 patients: 2023 SOSORT award winner. Eur Spine J. 2023;32(11): 3836-3845.
[21] PELC M, VILIMKOVA KAHANKOVA R, BLASZCZYSZYN M, et al. Initial study on an expert system for spine diseases screening using inertial measurement unit. Sci Rep. 2023;13(1):10440.
[22] 郝子强, 唐颖, 田芳, 等. 轻量化的多尺度注意力脊柱侧弯筛查方法[J]. 计算机工程与应用,2025,61(3):286-294.
[23] 赵凯宇, 李焕国, 宣伟玲, 等 健康体检人群中胸部X线检查结果分析[J]. 医疗卫生装备,2014,35(9):84-86.
[24] XIE L, ZHANG Q, HE D, et al. Automatically measuring the Cobb angle and screening for scoliosis on chest radiograph with a novel artificial intelligence method. Am J Transl Res. 2022;14(11):7880.
[25] ASHWORTH M, HANCOCK JA, ASHWORTH L, et al. Scoliosis screening an approach to cost/benefit analysis. Spine. 1988;13(10): 1187-1188.
[26] LEE W, SHIN K, LEE J, et al. Diagnosis of scoliosis using chest radiographs with a semi-supervised generative adversarial network. J Korean Soc Radiol. 2022;83(6): 1298.
[27] LEE JS, SHIN K, RYU SM, et al. Screening of adolescent idiopathic scoliosis using generative adversarial network (GAN) inversion method in chest radiographs. PLoS One. 2023;18(5):e0285489.
[28] VAN WEST H, HERFKENS J, RUTGES J, et al.
The smartphone as a tool to screen for scoliosis, applicable by everyone. Eur Spine J. 2022;31(4):990-995.
[29] QIAO J, XU L, ZHU Z, et al. Inter-and intraobserver reliability assessment of the axial trunk rotation: manual versus smartphone-aided measurement tools. BMC Musculoskelet Disord. 2014;15:1-4.
[30] BALG F, JUTEAU M, THEORET C, et al. Validity and reliability of the iPhone to measure rib hump in scoliosis. J Pediatr Orthop. 2014;34(8):774-779.
[31] DRISCOLL M, FORTIER-TOUGAS C, LABELLE H, et al. Evaluation of an apparatus to be combined with a smartphone for the early detection of spinal deformities. Scoliosis. 2014;9:1-5.
[32] IZATT MT, BATEMAN GR, ADAM CJ. Evaluation of the iPhone with an acrylic sleeve versus the Scoliometer for rib hump measurement in scoliosis. Scoliosis. 2012; 7:1-8.
[33] WANG L, XIE C, LIN Y, et al. Evaluation and comparison of accurate automated spinal curvature estimation algorithms with spinal anterior-posterior X-Ray images: The AASCE2019 challenge. Med Image Anal. 2021;72:102115.
[34] KARPIEL I, ZIĘBIŃSKI A, KLUSZCZYŃSKI M, et al. A survey of methods and technologies used for diagnosis of scoliosis. Sensors (Basel). 2021;21(24):10.
[35] WU H, BAILEY C, RASOULINEJAD P, et al. Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med Image Anal. 2018;48:1-11.
[36] WU H, BAILEY C, RASOULINEJAD P, et al. Automatic landmark estimation for adolescent idiopathic scoliosis assessment using BoostNet; proceedings of the Medical Image Computing and Computer Assisted Intervention− MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20, F, 2017. Springer.
[37] WANG L, XU Q, LEUNG S, et al. Accurate automated Cobb angles estimation using multi-view extrapolation net. Med Image Anal. 2019;58:101542.
[38] GALBUSERA F, NIEMEYER F, WILKE HJ, et al. Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach. Eur Spine J. 2019;28:951-960.
[39] WU C, MENG G, LIAN J, et al. A multi-stage ensemble network system to diagnose adolescent idiopathic scoliosis. Eur Radiol. 2022;32(9):5880-5889.
[40] ZOU L, GUO L, ZHANG R, et al. VLTENet: a deep-learning-based vertebra localization and tilt estimation network for automatic Cobb angle estimation. IEEE J Biomed Health Inform. 2023;27(6):3002-3013.
[41] RAHMANIAR W, SUZUKI K, LIN TL. Auto-CA: automated Cobb angle measurement based on vertebrae detection for assessment of spinal curvature deformity. IEEE Trans Biomed Eng. 2024;71(2):640-649.
[42] CHEN K, LEPENIK C, HUMMER A, et al. Fully automated measurement of Cobb angles in coronal plane spine radiographs. Osteoarthritis Cartilage. 2024;32:S78-S79.
[43] ANITHA H, KARUNAKAR A, DINESH K. Automatic extraction of vertebral endplates from scoliotic radiographs using customized filter. Biomed Eng Lett. 2014;4:158-165.
[44] PRABHU G. Automatic quantification of spinal curvature in scoliotic radiograph using image processing. J Med Syst. 2012; 36(3):1943-1951.
[45] SARDJONO TA, WILKINSON MH, VELDHUIZEN AG, et al. Automatic Cobb angle determination from radiographic images. Spine. 2013;38(20):E1256-E1262.
[46] ZHAO Y, ZHANG J, LI H, et al. Automatic Cobb angle measurement method based on vertebra segmentation by deep learning. Med Biol Eng Comput. 2022;60(8):2257-2269.
[47] MAEDA Y, NAGURA T, NAKAMURA M, et al. Automatic measurement of the Cobb angle for adolescent idiopathic scoliosis using convolutional neural network. Sci Rep. 2023;13(1):14576.
[48] MAALIW III RR. SCOLIONET: An Automated Scoliosis Cobb Angle Quantification Using Enhanced X-ray Images and Deep Learning Models. J Imaging. 2023;9(12):265.
[49] WONG JC, REFORMAT MZ, PARENT EC, et al.
Validation of an artificial intelligence-based method to automate Cobb angle measurement on spinal radiographs of children with adolescent idiopathic scoliosis. Eur J Phys Rehabil Med. 2023;54(4):535.
[50] BERLIN C, ADOMEIT S, GROVER P, et al. Novel AI-based algorithm for the automated computation of coronal parameters in adolescent idiopathic scoliosis patients: a validation study on 100 preoperative full spine X-rays. Global Spine J. 2024;14(6):1728-1737.
[51] JAKUBICEK R, CHMELIK J, OUREDNICEK P, et al. Deep-learning-based fully automatic spine centerline detection in CT data; proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), F, 2019 [C]. IEEE.
[52] QADRI SF, SHEN L, AHMAD M, et al. OP-convNet: A Patch Classification-Based Framework for CT Vertebrae Segmentation. IEEE Access. 2021;9:158227-158240.
[53] LI L, ZHANG T, LIN F, et al. Automated 3D Cobb Angle Measurement Using U-Net in CT Images of Preoperative Scoliosis Patients. J Imaging Inform Med. 2025;38(1):309-317.
[54] ANTICO M, LITTLE JP, JENNINGS H, et al. Deep Learning-based automatic segmentation for reconstructing vertebral anatomy of Healthy Adolescents and Patients with Adolescent Idiopathic Scoliosis (AIS) Using MRI Data. IEEE Access. 2021;9:86811-86823.
[55] VAN DER GRAAF JW, VAN HOOFF ML, VAN GINNEKEN B, et al. Development and validation of AI-based automatic measurement of coronal Cobb angles in degenerative scoliosis using sagittal lumbar MRI. Eur Radiol. 2024;34(9):5748-5757.
[56] AUBERT B, VAZQUEZ C, CRESSON T, et al. Automatic spine and pelvis detection in frontal X-rays using deep neural networks for patch displacement learning; proceedings of the 2016 ieee 13th international symposium on biomedical imaging (isbi), F, 2016 [C]. IEEE.
[57] BAKHOUS C, AUBERT B, VAZQUEZ C, et al. Automatic pedicles detection using convolutional neural network in a 3D spine reconstruction from biplanar radiographs; proceedings of the Medical Imaging 2018: Computer-Aided Diagnosis, F, 2018 [C]. SPIE.
[58] AUBERT B, VAZQUEZ C, CRESSON T, et al. Toward automated 3D spine reconstruction from biplanar radiographs using CNN for statistical spine model fitting. IEEE Trans Med Imaging. 2019;38(12):2796-2806.
[59] JIANG W, MEI F, XIE Q. Novel automated spinal ultrasound segmentation approach for scoliosis visualization. Front Physiol. 2022;13:1051808.
[60] HUANG Y, JIAO J, YU J, et al. Si-MSPDNet: A multiscale Siamese network with parallel partial decoders for the 3-D measurement of spines in 3D ultrasonic images. Comput Med Imaging Graph. 2023;108:102262.
[61] RAN QY, MIAO J, ZHOU SP, et al. Automatic 3-D spine curve measurement in freehand ultrasound via structure-aware reinforcement learning spinous process localization. Ultrasonics. 2023;132:107012.
[62] DAESCHLER SC, BOURGET MH, DERAKHSHAN D, et al. Rapid, automated nerve histomorphometry through open-source artificial intelligence. Sci Rep. 2022; 12(1):5975.
[63] HENTSCHEL S, KOBS K, HOTHO A. CLIP knows image aesthetics. Front Artif Intell. 2022;5:976235.
[64] TAJDARI M, MAQSOOD A, LI H, et al. Artificial intelligence data-driven 3D model for AIS. Stud Health Technol Inform. 2021;280:141-145.
[65] FABIJAN A, POLIS B, FABIJAN R, et al. Artificial Intelligence in Scoliosis Classification: An Investigation of Language-Based Models. J Pers Med. 2023;13(12): 1695.
[66] FABIJAN A, ZAWADZKA-FABIJAN A, FABIJAN R, et al. Assessing the Accuracy of Artificial Intelligence Models in Scoliosis Classification and Suggested Therapeutic Approaches. J Clin Med. 2024;13(14):4013.
[67] FABIJAN A, ZAWADZKA-FABIJAN A, FABIJAN R, et al. Artificial Intelligence in Medical Imaging: Analyzing the Performance of ChatGPT and Microsoft Bing in Scoliosis Detection and Cobb Angle Assessment. Diagnostics. 2024;14(7):773.
[68] CHALHOUB R, MOUAWAD A, AOUN M, et al. Will ChatGPT be able to replace a spine surgeon in the clinical setting?. World Neurosurg. 2024;185:e648-e652.
[69] LENKE LG, BETZ RR, HARMS J, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am. 2001; 83(8):1169-1181.
[70] HOSSEINPOUR-FEIZI H, SOLEIMANPOUR J, SALES JG, et al. Lenke and King classification systems for adolescent idiopathic scoliosis: interobserver agreement and postoperative results. Int J Gen Med. 2011:4:821-825.
[71] ZHUANG Q, QIU G, LI Q, et al. Modified PUMC classification for adolescent idiopathic scoliosis. Spine J. 2019;19(9): 1518-1528.
[72] THONG W, PARENT S, WU J, et al. Three-dimensional morphology study of surgical adolescent idiopathic scoliosis patient from encoded geometric models. Eur Spine J. 2016;25:3104-3113.
[73] TINGSHENG L, CHUNSHAN L, SHUDAN Y, et al. Validation of artificial intelligence in the classification of adolescent idiopathic scoliosis and the compairment to clinical manual handling. Orthop Surg. 2024;16(8): 2040-2051.
[74] MANZETTI M, RUFFILLI A, BARILE F, et al. Is there a skeletal age index that can predict accurate curve progression in adolescent idiopathic scoliosis? A systematic review. Pediatr Radiol. 2024;54(2):299-315.
[75] NAULT ML, BEAUSÉJOUR M, ROY-BEAUDRY M, et al. A predictive model of progression for adolescent idiopathic scoliosis based on 3D spine parameters at first visit. Spine. 2020;45(9):605-611.
[76] YAHARA Y, TAMURA M, SEKI S, et al. A deep convolutional neural network to predict the curve progression of adolescent idiopathic scoliosis: a pilot study. BMC Musculoskelet Disord. 2022;23(1):610.
[77] KIM YG, KIM S, PARK JH, et al. Explainable Deep-Learning-Based Gait Analysis of Hip–Knee Cyclogram for the Prediction of Adolescent Idiopathic Scoliosis Progression. Sensors. 2024;24(14):4504.
[78] SMITH JS, SHAFFREY CI, BESS S, et al. Recent and emerging advances in spinal deformity. Neurosurgery. 2017;80(3S):S70-S85.
[79] SHEEHAN DD, GRAYHACK J. Pediatric scoliosis and kyphosis: an overview of diagnosis, management, and surgical treatment. Pediatr Ann. 2017;46(12): e472-e480.
[80] THODBERG HH, KREIBORG S, JUUL A, et al. The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging. 2008;28(1):52-66.
[81] ZHOU XL, WANG EG, LIN Q, et al. Diagnostic performance of convolutional neural network-based Tanner-Whitehouse 3 bone age assessment system. Quant Imaging Med Surg. 2020;10(3):657.
[82] XIE LZ, DOU XY, GE TH, et al. Deep learning–based identification of spine growth potential on EOS radiographs. Eur Radiol. 2024;34(5):2849-2860.
[83] 吴南, 仉建国, 朱源棚, 等. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报(医学版),2023,61(3):14-20. |