[1] ASPRAY TJ, HILL TR. Osteoporosis and the Ageing Skeleton. Subcell Biochem. 2019;91: 453-476. 
 [2]	杨城,李玮民,冉栋成,等.铁死亡与骨质疏松症[J].中国组织工程研究,2025,29(3): 554-562. 
 [3]	VANDENBROUCKE A, LUYTEN FP, FLAMAING J, et al. Pharmacological treatment of osteoporosis in the oldest old. Clin Interv Aging. 2017;12:1065-1077. 
 [4]	JOHNSTON CB, DAGAR M. Osteoporosis in Older Adults. Med Clin North Am. 2020; 104(5):873-884. 
 [5]	ABDALBARY M, SOBH M, ELNAGAR S, et al. Management of osteoporosis in patients with chronic kidney disease. Osteoporos Int. 2022;33(11):2259-2274. 
 [6]	MIRZA F, CANALIS E. Management of endocrine disease: Secondary osteoporosis: pathophysiology and  management. Eur J Endocrinol. 2015;173(3):R131-R151. 
 [7]	SOZEN T, OZISIK L, BASARAN NC. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46-56. 
 [8]	方志杰,马抢平,董万涛,等.肠道菌群与骨质疏松症的遗传关系:来自英国数据库211个肠道微生物群分析[J].中国组织工程研究,2025,29(18):3941-3947. 
 [9]	RAO Z, ZHU Y, YANG P, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics. 2022;12(9):4310-4329. 
[10]	ALMEIDA M, LAURENT MR, DUBOIS V, et al. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev. 2017;97(1):135-187. 
[11]	AWAD F, ASSRAWI E, LOUVRIER C, et al. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol Ther. 2018;187:133-149. 
[12]	ZENG C, WANG R, TAN H. Role of Pyroptosis in Cardiovascular Diseases and its Therapeutic Implications. Int J Biol Sci. 2019;15(7): 1345-1357. 
[13]	WU J, LIN S, WAN B, et al. Pyroptosis in Liver Disease: New Insights into Disease Mechanisms. Aging Dis. 2019;10(5):1094-1108. 
[14]	YU P, ZHANG X, LIU N, et al. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6(1):128. 
[15]	LOVELESS R, BLOOMQUIST R, TENG Y. Pyroptosis at the forefront of anticancer immunity. J Exp Clin Cancer Res. 2021; 40(1):264. 
[16]	ALLEN KD, THOMA LM, GOLIGHTLY YM. Epidemiology of osteoarthritis. Osteoarthritis Cartilage. 2022;30(2):184-195. 
[17]	SAFIRI S, KOLAHI AA, HOY D, et al. Global, regional and national burden of rheumatoid arthritis 1990-2017: a  systematic analysis of the Global Burden of Disease study 2017. Ann Rheum Dis. 2019;78(11):1463-1471. 
[18]	WANG L, YU W, YIN X, et al. Prevalence of Osteoporosis and Fracture in China: The China Osteoporosis  Prevalence Study. JAMA Netw Open. 2021;4(8):e2121106. 
[19]	ZHOU M, WANG H, ZENG X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a  systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;394(10204):1145-1158. 
[20]	GALLUZZI L, VITALE I, AARONSON SA, et al.  
Molecular mechanisms of cell death: recommendations of the Nomenclature Committee  on Cell Death 2018. Cell Death Differ. 2018;25(3):486-541. 
[21]	DU T, GAO J, LI P, et al. Pyroptosis, metabolism, and tumor immune microenvironment. Clin Transl Med. 2021;11(8):e492. 
[22]	JIANG D, CHEN S, SUN R, et al. The NLRP3 inflammasome: Role in metabolic disorders and regulation by metabolic  pathways. Cancer Lett. 2018;419:8-19. 
[23]	PLACE DE, KANNEGANTI TD. Recent advances in inflammasome biology. Curr Opin Immunol. 2018;50:32-38. 
[24]	BROZ P, DIXIT VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407-420. 
[25]	SHI J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660-665. 
[26]	SBORGI L, RUHL S, MULVIHILL E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 2016;35(16):1766-1778. 
[27]	ING J, WANG K, LIU W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610): 111-116. 
[28]	WEITZMANN MN, PACIFICI R. The role of T lymphocytes in bone metabolism. Immunol Rev. 2005;208:154-168. 
[29]	HE D, ZHOU M, BAI Z, et al. Propionibacterium acnes induces intervertebral disc degeneration by promoting  nucleus pulposus cell pyroptosis via NLRP3-dependent pathway. Biochem Biophys Res Commun. 2020;526(3): 
772-779. 
[30]	WANG Y, GAO W, SHI X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017; 547(7661):99-103. 
[31]	NEWTON K, WICKLIFFE KE, MALTZMAN A, et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature. 2019;575(7784):679-682. 
[32]	HOU J, ZHAO R, XIA W, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer  cells and facilitates tumour necrosis. Nat Cell Biol. 2020;22(10): 1264-1275. 
[33]	DINARELLO CA. Overview of the interleukin-1 family of ligands and receptors. Semin Immunol. 2013;25(6):389-393. 
[34]	ONO T, NAKASHIMA T. Recent advances in osteoclast biology. Histochem Cell Biol. 2018;149(4):325-341. 
[35]	LACATIVA PG, FARIAS ML. Osteoporosis and inflammation. Arq Bras Endocrinol Metabol. 2010;54(2):123-132. 
[36]	WEI S, KITAURA H, ZHOU P, et al. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest. 2005;115(2):282-290. 
[37]	FENG C, XIAO L, YU JC, et al. Simvastatin promotes osteogenic differentiation of mesenchymal stem cells in rat  model of osteoporosis through BMP-2/Smads signaling pathway. Eur Rev Med Pharmacol Sci. 2020; 24(1):434-443. 
[38]	GE Y, HUANG M, YAO YM. Recent advances in the biology of IL-1 family cytokines and their potential roles  in development of sepsis. Cytokine Growth Factor Rev. 2019;45:24-34. 
[39]	GONG W, SHI Y, REN J. Research progresses of molecular mechanism of pyroptosis and its related  diseases. Immunobiology. 2020;225(2):151884. 
[40]	GRACIE JA, FORSEY RJ, CHAN WL, et al. A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest. 1999;104(10): 1393-1401. 
[41]	GAO Y, GRASSI F, RYAN MR, et al. IFN-gamma stimulates osteoclast formation and bone loss in vivo via  antigen-driven T cell activation. J Clin Invest. 2007;117(1):122-132. 
[42]	YI YS. Role of inflammasomes in inflammatory autoimmune rheumatic diseases. Korean J Physiol Pharmacol. 2018;22(1):1-15. 
[43]	DOSTERT C, PETRILLI V, Van BRUGGEN R, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and  silica. Science. 2008;320(5876):674-677. 
[44]	ZHU X, ZHANG K, LU K, et al. Inhibition of pyroptosis attenuates Staphylococcus aureus-induced bone injury in  traumatic osteomyelitis. Ann Transl Med. 2019; 7(8):170. 
[45]	GREENE E, FLEES J, DHAMAD A, et al. Double-Stranded RNA Is a Novel Molecular Target in Osteomyelitis Pathogenesis: A  Translational Avian Model for Human Bacterial Chondronecrosis with Osteomyelitis. Am J Pathol. 2019; 189(10):2077-2089. 
[46]	YANG C, SONG B, HAN L, et al. Study on the mechanism of NLRP3 effect on the skeleton of de-ovalized mice. Biochem Biophys Rep. 2023;35:101496. 
[47]	PLOTKIN LI, BELLIDO T. Osteocytic signalling pathways as therapeutic targets for bone fragility. Nat Rev Endocrinol. 2016;12(10): 593-605. 
[48]	WANG L, CHEN K, WAN X, et al. NLRP3 inflammasome activation in mesenchymal stem cells inhibits osteogenic  differentiation and enhances adipogenic differentiation. Biochem Biophys Res Commun. 2017;484(4): 871-877. 
[49]	WANG X, JIANG M, HE X, et al. N‑acetyl cysteine inhibits the lipopolysaccharide‑induced inflammatory response  in bone marrow mesenchymal stem cells by suppressing the TXNIP/NLRP3/IL‑1beta  signaling pathway. Mol Med Rep. 2020;22(4):3299-3306. 
[50]	WU Z, DING Q, YUE M, et al. Caspase-3/GSDME-mediated pyroptosis leads to osteogenic dysfunction of  osteoblast-like cells. Oral Dis. 2024;30(3):1392-1402. 
[51]	RUAN H, ZHANG H, FENG J, et al. Inhibition of Caspase-1-mediated pyroptosis promotes osteogenic differentiation,  offering a therapeutic target for osteoporosis. Int Immunopharmacol. 2023;124(Pt B):110901. 
[52]	XU L, ZHANG L, WANG Z, et al. Melatonin Suppresses Estrogen Deficiency-Induced Osteoporosis and Promotes  Osteoblastogenesis by Inactivating the NLRP3 Inflammasome. Calcif Tissue Int. 2018;103(4): 400-410. 
[53]	LI J, WANG X, YAO Z, et al. NLRP3-Dependent Crosstalk between Pyroptotic Macrophage and Senescent Cell  Orchestrates Trauma-Induced Heterotopic Ossification During Aberrant Wound  Healing. Adv Sci (Weinh). 2023;10(19):e2207383. 
[54]	XIA C, OU S, YANG Y, et al. ELP2-NLRP3-GSDMD/GSDME-mediated pyroptosis is induced by TNF-alpha in MC3T3-E1 cells  during osteogenic differentiation. J Cell Mol Med. 2023;27(24):4093-4106. 
[55]	ALAM MI, MAE M, FARHANA F, et al. NLRP3 Inflammasome Negatively Regulates RANKL-Induced Osteoclastogenesis of Mouse  Bone Marrow Macrophages but Positively Regulates It in the Presence of  Lipopolysaccharides. Int J Mol Sci. 2022;23(11):6096. 
[56]	WU YL, ZHANG CH, TENG Y, et al. Propionate and butyrate attenuate macrophage pyroptosis and osteoclastogenesis  induced by CoCrMo alloy particles. Mil Med Res. 2022;9(1):46. 
[57]	QU C, BONAR SL, HICKMAN-BRECKS CL, et al. NLRP3 mediates osteolysis through inflammation-dependent and -independent  mechanisms. FASEB J. 2015;29(4): 1269-1279. 
[58]	JIANG M, SHANG Z, ZHANG T, et al. Study on the role of pyroptosis in bone resorption induced by occlusal trauma  with or without periodontitis. J Periodontal Res. 2022;57(3):448-460. 
[59]	LI M, YANG D, YAN H, et al. Gasdermin D maintains bone mass by rewiring the endo-lysosomal pathway of  osteoclastic bone resorption. Dev Cell. 2022;57(20):  2365-2380. 
[60]	YING Y, JIN J, YE L, et al. Phloretin Prevents Diabetic Cardiomyopathy by Dissociating Keap1/Nrf2 Complex and  Inhibiting Oxidative Stress. Front Endocrinol (Lausanne). 2018;9:774. 
[61]	LIU F, FENG M, XING J, et al. Timosaponin alleviates oxidative stress in rats with high fat diet-induced  obesity via activating Nrf2/HO-1 and inhibiting the NF-kappaB pathway. Eur J Pharmacol. 2021;909:174377. 
[62]	CHAI S, YANG Y, WEI L, et al. Luteolin rescues postmenopausal osteoporosis elicited by OVX through alleviating  osteoblast pyroptosis via activating PI3K-AKT signaling. Phytomedicine. 2024;128:155516. 
[63]	SUN D, PENG Y, GE S, et al. USP1 Inhibits NF-kappaB/NLRP3 Induced Pyroptosis through TRAF6 in Osteoblastic  MC3T3-E1 Cells. J Musculoskelet Neuronal Interact. 2022;22(4):536-545. 
[64]	CAO S, WANG Y, ZHANG Y, et al. Naringenin can Inhibit the Pyroptosis of Osteoblasts by Activating the Nrf2/HO-1  Signaling Pathway and Alleviate the Differentiation Disorder of Osteoblasts  Caused by Microgravity. J Agric Food Chem. 2024;72(46):25586-25600. 
[65]	DE MARTINIS M, SIRUFO MM, GINALDI L. Osteoporosis: Current and Emerging Therapies Targeted to Immunological  Checkpoints. Curr Med Chem. 2020;27(37):6356-6372. 
[66]	WANG H, LUO Y, WANG H, et al. Mechanistic advances in osteoporosis and anti-osteoporosis therapies. MedComm (2020). 2023;4(3):e244. 
[67]	D’AMICO D, ANDREUX P A, VALDES P, et al. Impact of the Natural Compound Urolithin A on Health, Disease, and Aging. Trends Mol Med. 2021;27(7):687-699. 
[68]	TAO H, LI W, ZHANG W, et al. Urolithin A suppresses RANKL-induced osteoclastogenesis and postmenopausal  osteoporosis by, suppresses inflammation and downstream NF-kappaB activated  pyroptosis pathways. Pharmacol Res. 2021;174:105967. 
[69]	LI Q, TAO X, ZHANG Y. Rosmarinic acid alleviates diabetic osteoporosis by suppressing the activation of  NLRP3 inflammasome in rats. Physiol Int. 2022.doi: 10.1556/2060.2022.00154.  
[70]	LIU S, CUI F, NING K, et al. Role of irisin in physiology and pathology. Front Endocrinol (Lausanne). 2022;13:962968. 
[71]	KAWAO N, IEMURA S, KAWAGUCHI M, et al. Role of irisin in effects of chronic exercise on muscle and bone in  ovariectomized mice. J Bone Miner Metab. 2021;39(4):547-557. 
[72]	BEHERA J, ISON J, VOOR M J, et al. Exercise-Linked Skeletal Irisin Ameliorates Diabetes-Associated Osteoporosis by  Inhibiting the Oxidative Damage-Dependent miR-150-FNDC5/Pyroptosis Axis. Diabetes. 2022; 71(12):2777-2792. 
[73]	ZHANG Y, LIU T, YANG H, et al. Melatonin: A novel candidate for the treatment of osteoarthritis. Ageing Res Rev. 2022;78: 101635. 
[74]	XU P, LIN B, DENG X, et al. Anti-osteoporosis effects of Anemarrhenae Rhizoma / Phellodendri Chinensis Cortex  herb pair and its major active components in diabetic rats and zebrafish. J Ethnopharmacol. 2022; 293:115269. 
[75]	FU F, LUO H, Du Y, et al. AR/PCC herb pair inhibits osteoblast pyroptosis to alleviate diabetes-related  osteoporosis by activating Nrf2/Keap1 pathway. J Cell Mol Med. 2023; 27(22):3601-3613. 
[76]	BANDOPADHYAY S, ANAND U, GADEKAR VS, et al. Dioscin: A review on pharmacological properties and therapeutic values. Biofactors. 2022;48(1):22-55. 
[77]	YIN W, LIU S, DONG M, et al. A New NLRP3 Inflammasome Inhibitor, Dioscin, Promotes Osteogenesis. Small. 2020;16(1):e1905977. 
[78]	LI H, GUAN Y, LIANG B, et al. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur J Pharmacol. 2022;928:175091. 
[79]	NI B, PEI W, QU Y, et al. MCC950, the NLRP3 Inhibitor, Protects against Cartilage Degradation in a Mouse  Model of Osteoarthritis. Oxid Med Cell Longev. 2021; 2021:4139048. |