中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (4): 964-974.doi: 10.12307/2026.531
• 组织构建综述 tissue construction review • 上一篇 下一篇
魏 博,邱建钢
收稿日期:
2024-12-16
接受日期:
2025-01-25
出版日期:
2026-02-08
发布日期:
2025-05-21
通讯作者:
邱建钢,硕士,教授,博士生导师,成都体育学院,四川省成都市 641418
作者简介:
魏博,男,1997年生,河北省石家庄市人,汉族,成都体育学院在读博士,主要从事运动训练过程控制与负荷设计、田径教学训练理论与实践。
基金资助:
Wei Bo, Qiu Jiangang
Received:
2024-12-16
Accepted:
2025-01-25
Online:
2026-02-08
Published:
2025-05-21
Contact:
Qiu Jiangang, Master, Professor, Doctoral supervisor, Chengdu Sport University, Chengdu 641418, Sichuan Province, China
About author:
Wei Bo, PhD candidate, Chengdu Sport University, Chengdu 641418, Sichuan Province, China
Supported by:
摘要:
文题释义:
乳酸:是肌肉在无氧代谢过程中产生的一种代谢产物,当运动强度超过有氧代谢能力时,乳酸水平上升。适量的乳酸积累可以刺激肌肉生长和适应,但乳酸过量会导致肌肉疲劳和酸痛。通过运动训练可以提高乳酸阈值,增强肌肉耐力和运动表现。
双乳酸阈值运动训练:是一种结合有氧和无氧训练的策略,通过在一天内进行2次不同强度(有氧阈值训练/无氧阈值训练)的训练来提高运动者的耐力和速度。这种训练方法通过精确控制乳酸水平避免过度疲劳,同时促进身体适应更高强度的运动。
背景:乳酸阈值是评价耐力运动者有氧代谢能力和训练水平的重要生理指标,代表了机体乳酸生成与清除达到动态平衡的强度点。传统的长时间、稳定强度的乳酸阈值训练方法,旨在提高运动者的有氧耐力和乳酸清除效率。近年来,随着运动生理学的发展,双乳酸阈值运动训练作为一种新兴的训练模式,受到学术界和实践者的广泛关注。然而,目前关于双乳酸阈值运动训练的系统研究仍然有限,尤其是在生理机制、最佳实施方案和长期效果等方面尚不明确。
目的:探讨双乳酸阈值运动训练的发展脉络、基本内涵、应用效果及作用机制,以期为耐力运动训练理论的完善和实践的优化提供科学依据和指导。
方法:以“乳酸阈值训练,双乳酸阈值训练,乳酸训练,阈值训练,耐力训练,挪威训练法,挪威训练模式,挪威训练经验”为中文检索词,以”Lactate Threshold Training,Double lactate Threshold Training,Lactate Training,Threshold Training,Endurance Training,Norwegian Training Method,Norwegian Training Mode,Norwegian Training Experience”为英文检索词,在PubMed、Web of Science、Embase、Medline、Cochrane Library、中国知网、万方、维普数据库中进行系统检索,筛选后有8篇文献符合要求,共涉及8个训练案例、14人次国际顶尖运动者,运动项目包含800 m、1 500 m、5 000 m、10 000 m、越野跑(男9.5 km/女4.5 km)。
结果与结论:①首次将双乳酸阈值训练界定为:以提升有氧能力与速度能力为目的,在一天训练日内分别进行有氧阈值与无氧阈值训练(有氧训练负荷强度要求0.7-2.0 mmol/L、无氧训练负荷强度要求2.0-4.5 mmol/L)、训练频次≥2次/周,训练量在≈120-160 km/周的一种训练策略。②双乳酸阈值训练对肌肉适应性与可塑性(维度、弹性)、增加有氧与无氧能力、缓解中枢神经疲劳与外周疲劳具有积极作用。③双乳酸阈值训练产生效果的主要机制可能是激素分泌、蛋白质合成与抑制调节、肌纤维募集与细胞肿胀、线粒体生物合成与呼吸功能链改善、神经递质调节等过程。④在应用双乳酸阈值训练过程中,要充分考虑个性化训练方案、阈值训练日负荷强度设计与监控、适用的运动项目,为系统完善双乳酸阈值训练还需要在应用对象、训练方案、作用机制、效果评估、安全应用方面进一步探究。
https://orcid.org/0009-0007-8647-5806(魏博)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
魏 博, 邱建钢. 双乳酸阈值运动训练:发展脉络、基本内涵、应用效果及作用机制[J]. 中国组织工程研究, 2026, 30(4): 964-974.
Wei Bo, Qiu Jiangang. Double lactate threshold exercise training: development context, basic connotation, application effect and mechanism of action[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 964-974.
[1] JOHANSEN JM, SUNDE A, HELGERUD J, et al. Relationships Between Maximal Aerobic Speed, Lactate Threshold, and Double Poling Velocity at Lactate Threshold in Cross-Country Skiers. Front Physiol. 2022;13: 829758. [2] FORTE LDM, MANCHADO-GOBATTO FB, RODRIGUES RCM, et al. Non-exhaustive double effort test is reliable and estimates the first ventilatory threshold intensity in running exercise. J Sport Health Sci. 2018;7(2):197-203. [3] SEILER S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010; 5(3):276-291. [4] 朱苗苗,孔凡明,赵倩.运动调控乳酸代谢 [J].中国组织工程研究, 2023,27(2):322-328. [5] KJØSEN TALSNES R, TORVIK PØ, SKOVERENG K, et al. Comparison of acute physiological responses between one long and two short sessions of moderate-intensity training in endurance athletes. Front Physiol. 2024;15:1428536. [6] SHEN T, WEN X. Heart-rate-based prediction of velocity at lactate threshold in ordinary adults. J Exerc Sci Fit. 2019;17(3):108-112. [7] NEUNHÄUSERER D, REICH B, MAYR B, et al. Impact of exercise training and supplemental oxygen on submaximal exercise performance in patients with COPD. Scand J Med Sci Sports. 2021;31(3):710-719. [8] MATSUMOTO K, KOBA T, HAMADA K, et al. Branched-chain amino acid supplementation increases the lactate threshold during an incremental exercise test in trained individuals. J Nutr Sci Vitaminol (Tokyo). 2009; 55(1):52-58. [9] LAROCHE DP, AMANN M, RUNDELL KW. Grade influences blood lactate kinetics during cross-country skiing. J Strength Cond Res. 2010; 24(1):120-127. [10] GURNEY T, BROUNER J, SPENDIFF O. Twenty-one days of spirulina supplementation lowers heart rate during submaximal cycling and augments power output during repeated sprints in trained cyclists. Appl Physiol Nutr Metab. 2021;47(1):18-26. [11] 黎涌明.动作与能量代谢视角下的体能[J].体育科研,2022,43(5): 1-6+35. [12] 黎涌明,张蓓,王雄,等.训练科学与训练实践的深度融合:现实•障碍•建议[J].体育科研,2020,41(6):1-9. [13] 黎涌明,殷明越,李博,等.运动与训练科学的五大“论战”[J].首都体育学院学报,2024,36(1):22-33. [14] TJELTA LI. The training of international level distance runners. Int J Sports Sci Coach. 2016;11(1):122-134. [15] TJELTA LI .A Longitudinal Case Study of the Training of the 2012 European 1500 m Track Champion. Int J Appl Sports Sci. 2013;25(1): 11-18. [16] TJELTA LI .Three Norwegian brothers all European 1500m champions: What is the secret. Int J Sports Sci Coach. 2019;14(5):694-700. [17] KELEMEN B, BENCZENLEITNER O, TÓTH L. The Norwegian Endurance Model in Middle and Long-Distance Running: A Systematic Review of the Literature. Hungarian Rev Sport Sci. 2022;23(4):19-25. [18] ENOKSEN E, TJELTA AR, TJELTA LI. Distribution of training volume and intensity of elite male and female track and marathon runners. Int J Sports Sci Coach. 2011;6(2):273-293. [19] SEILER S, TØNNESSEN E. Intervals, Thresholds, and Long Slow Distance: the Role of Intensity and Duration in Endurance Training.Training. 2006; 13:32-53. [20] TJELTA LI, TØNNESSEN E, ENOKSEN E. A case study of the training of nine times New York Marathon winner Grete Waitz. Int J Sports Sci Coach. 2014; 9(1):139-159. [21] TJELTA LI, ENOKSEN E. Training Characteristics of Male Junior Cross Country and Track Runners on European Top Level. Int J Sports Sci Coach. 2010;5(2):193-203. [22] 聂秋,李丹阳,陈建.肌力平衡:释义、内在机制及实践应用[J].中国体育科技,2023,59(3):28-36. [23] FLECKENSTEIN D, SEELHÖFER J, WALTER N, et al. From Incremental Test to Continuous Running at Fixed Lactate Thresholds: Individual Responses on %VO2max, %HRmax, Lactate Accumulation, and RPE. Sports (Basel). 2023;11(10):198. [24] KRISHNAN A, SIVARMAN A, ALWAR T, et al. Relevance of lactate threshold in endurance sports: A Review. Ejpmr. 2020;7(9):513-524. [25] FAUDE O, KINDERMANN W, MEYER T. Lactate threshold concepts: how valid are they? Sports Med. 2009;39(6):469-490. [26] BENEKE R. Maximal lactate steady state concentration (MLSS): experimental and modelling approaches. Eur J Appl Physiol. 2003; 88(4-5):361-369. [27] KREHER JB. Diagnosis and prevention of overtraining syndrome: an opinion on education strategies. Open Access J Sports Med. 2016;7: 115-122. [28] CASADO A, FOSTER C, BAKKEN M, et al. Does Lactate-Guided Threshold Interval Training within a High-Volume Low-Intensity Approach Represent the “Next Step” in the Evolution of Distance Running Training? Int J Environ Res Public Health. 2023;20(5):3782. [29] DEVLIN J, PATON B, POOLE L, et al. Blood lactate clearance after maximal exercise depends on active recovery intensity. J Sports Med Phys Fitness. 2014;54(3):271-278. [30] BISHOP D, EDGE J, THOMAS C, et al. High-intensity training enhances muscle responses. J Appl Physiol. 2008;105(3):857-864. [31] LEE MC, HSU YJ, CHEN MT, et al. Efficacy of Lactococcus lactis subsp. lactis LY-66 and Lactobacillus plantarum PL-02 in Enhancing Explosive Strength and Endurance: A Randomized, Double-Blinded Clinical Trial. Nutrients. 2024;16(12):1921. [32] GIBALA MJ, MCGEE SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev. 2008;36(2):58-63. [33] BROOKS GA. Lactate: link between glycolytic and oxidative metabolism. Sports Med. 2007;37(4-5):341-343. [34] ZOLADZ JA, SZKUTNIK Z, MAJERCZAK J, et al. The effect of a 3-week cycling training on the activity of the enzyme phosphofructokinase (PFK) in human vastus lateralis muscle. Biochem Soc Trans. 2004; 32(Pt 2):333-335. [35] COYLE EF. Substrate utilization during exercise in active people. Am J Clin Nutr. 1995;61(4 Suppl):968S-979S. [36] ZHANG L, XIN C, WANG S, et al. Lactate transported by MCT1 plays an active role in promoting mitochondrial biogenesis and enhancing TCA flux in skeletal muscle. Sci Adv. 2024;10(26):eadn4508. [37] KELEMEN B, BENCZENLEITNER O, TÓTH L. The Norwegian double-threshold method in distance running: Systematic literature review. Sci J Sport Perform. 2024;3(1):38-46. [38] WEN D, UTESCH T, WU J, et al. Effects of different protocols of high intensity interval training for VO(2)max improvements in adults: A meta-analysis of randomised controlled trials. J Sci Med Sport. 2019; 22(8):941-947. [39] KILPATRICK MW, JUNG ME, LITTLE JP. High-intensity interval training: A review of physiological and psychological responses. Acsms Health Fit J. 2014;18(5):11-16. [40] LEVERITT M, ABERNETHY PJ, BARRY BK, et al. Concurrent Strength and Endurance Training. Sports Med. 1999;28(6):413-427. [41] YU H, CHEN X, ZHU W, et al. A quasi-experimental study of Chinese top-level speed skaters’ training load: threshold versus polarized model. Int J Sports Physiol Perform. 2012;7(2):103-112. [42] BURGOMASTER KA, HOWARTH KR, PHILLIPS SM, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008; 586(1):151-160. [43] HARRIS CP, ANDREWS NA, JOHNSON KE, et al. Physiological Responses To Intermittent Blood Flow Restriction During Cycling Exercise: 3256 Board# 77 May 29 2: 30 PM-4: 00 PM. Med Sci Sports Exerc. 2020; 52(7S):889. [44] 曾仁杰,周珂,姒刚彦,等.内感受对运动表现的影响:发生机制与潜在路径[J].中国体育科技,2024,60(2):21-27. [45] KELEMEN B, BENCZENLEITNER O, TÓTH L. The Norwegian Double- Threshold Method in Distance Running: Systematic Literature Review. Sci J Sport Perform. 2023;3(1):38-46. [46] DE FEO P, DI LORETO C, LUCIDI P, et al. Metabolic response to exercise. J Endocrinol Invest. 2003;26:851-854. [47] WEST DW, PHILLIPS SM. Anabolic processes in human skeletal muscle: restoring the identities of growth hormone and testosterone. Phys Sportsmed. 2010;38(3):97-104. [48] 魏博.整合分期训练模式的内涵与功能维度[J].中国体育教练员, 2024,32(3):20-26. [49] 魏博. 整合分期训练理论视域中“科技引领”要素的系统地位、结构功能与实践启迪[C]//中国体育科学学会. 第十三届全国体育科学大会论文摘要集:专题报告(运动训练学分会). 成都体育学院, 2023. [50] 魏博.整合分期理论视域下赛前竞技状态调控新路径的研究[C]//中国体育科学学会. 第八届中国体育博士高层论坛论文汇编(专题报告). 成都体育学院,2022. [51] 翟海亭,李成,夏吉祥,等.整合性神经肌肉训练预防下肢运动损伤的元分析 [J].中国组织工程研究,2022,26(15):2454-2460. [52] KRAEMER WJ, RATAMESS NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339-361. [53] GRIGGS RC, KINGSTON W, JOZEFOWICZ RF, et al. Effect of testosterone on muscle mass and muscle protein synthesis. J Appl Physiol (1985). 1989;66(1):498-503. [54] SABAG A, CHANG D, JOHNSON NA. Growth Hormone as a Potential Mediator of Aerobic Exercise-Induced Reductions in Visceral Adipose Tissue. Front Physiol. 2021;12:623570. [55] WIDEMAN L, WELTMAN JY, HARTMAN ML, et al. Growth hormone release during acute and chronic aerobic and resistance exercise: recent findings. Sports Med. 2002;32(15):987-1004. [56] SABAG A, CHANG D, JOHNSON NA. Growth Hormone as a Potential Mediator of Aerobic Exercise-Induced Reductions in Visceral Adipose Tissue. Front Physiol. 2021;12:623570. [57] TREMBLAY A, SIMONEAU JA, BOUCHARD C. Impact of exercise intensity on body fatness and skeletal muscle metabolism. Metabolism. 1994; 43(7):814-818. [58] HÄKKINEN K, PAKARINEN A, ALÉN M, et al. Serum hormones during prolonged training of neuromuscular performance. Eur J Appl Physiol Occup Physiol. 1985;53(4):287-293. [59] BAKER JS, MCCORMICK MC, ROBERGS RA. Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. J Nutr Metab. 2010;2010:905612. [60] GOLBIDI S, LAHER I. Exercise and the cardiovascular system. Cardiol Res Pract. 2012; 2012(1):210852. [61] ASTORINO TA, ROBERSON DW. Efficacy of low-volume high-intensity interval training: a meta-analysis. J Strength Cond Res. 2010;24(1): 244-257. [62] BERG HM, HARGREAVES M. Influence of exercise intensity on skeletal muscle hormone receptor regulation. J Appl Physiol. 2006;100(6): 2044-2048. [63] COFFEY VG, HAWLEY JA. The molecular bases of training adaptation. Sports Med. 2007;37(9):737-763. [64] KRAEMER WJ, RATAMESS NA, FRENCH DN, et al. Hormonal responses to resistance exercise in women. Sports Med. 2009;39(12):1033-1060. [65] HÄKKINEN K, PAKARINEN A, ALÉN M, et al. Serum hormones during prolonged training of neuromuscular performance. Eur J Appl Physiol Occup Physiol. 1988;58(2):113-120. [66] RENNIE MJ, WACKERHAGE H, SPANGENBURG EE, et al. Control of the size of the human muscle mass. Annu Rev Physiol. 2004;66:799-828. [67] BURD NA, WEST DW, MOORE DR, et al. Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr. 2011;141(4):568-573. [68] RASMUSSEN BB, PHILLIPS SM. Contractile and nutritional regulation of human muscle growth. Exerc Sport Sci Rev. 2003;31(3):127-131. [69] HOLLOSZY JO, KOHRT WM. Exercise. Obesity. 1996;84(1):77-81. [70] RICHTER EA, HARGREAVES M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993-1017. [71] HEATH GW, GAVIN JR 3RD, HINDERLITER JM, et al. Effects of exercise and lack of exercise on glucose tolerance and insulin sensitivity. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(2):512-517. [72] GUILLET C, BOIRIE Y. Insulin resistance: a contributing factor to age-related muscle mass loss? Diabetes Metab. 2005;31:5S20-5S26. [73] BIOLO G, MAGGI SP, WILLIAMS BD, et al. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol. 1995;268(3 Pt 1):E514-E520. [74] BROOKS GA. Intra- and extra-cellular lactate shuttles. Med Sci Sports Exerc. 2000;32(4):790-799. [75] BAAR K. Training-induced changes in skeletal muscle. J Appl Physiol. 2006;101(1):3-11. [76] PHILP A, MACDONALD AL, BAAR K. Features of endurance training. Compr Physiol. 2011;1(2):923-959. [77] TIPTON KD, WOLFE RR. Exercise-induced changes in protein metabolism. Acta Physiol Scand. 2001;162(3):377-387. [78] CARROLL TJ, SELVANAYAGAM VS, RIEK S, et al. Neural adaptations to strength training: moving beyond transcranial magnetic stimulation and reflex studies. Acta Physiol (Oxf). 2011;202(2):119-140. [79] HOLLOSZY JO, COYLE EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(4):831-838. [80] BERGMAN BC, BUTTERFIELD GE, WOLFEL EE, et al. Muscle triglyceride metabolism during prolonged exercise in men: effects of training. Am J Physiol Endocrinol Metab.1999;277(4):E667-E674. [81] GASTIN PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725-741. [82] VISSING K, CLAUSEN T. Cell swelling in human skeletal muscle fibers during exercise. J Physiol. 2000;528(3):637-644. [83] FARINA D, MERLETTI R, MINETTO MA. The control of motor units in human movements. J Neurophysiol. 2014;112(11):2821-2834. [84] HOFFMAN MD, MCCORMICK S. Physiological responses to prolonged exercise. Int J Sports Physiol Perform. 2016;11(1):5-12. [85] LAURSEN PB, JENKINS DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32(1):53-73. [86] VOLLAARD NB, SHEARMAN JP, COOPER CE. Exercise-induced oxidative stress:myths, realities and physiological relevance. Sports Med. 2005; 35(12):1045-1062. [87] 常芸,高晓嶙.线粒体DNA多态性与人类运动能力的研究进展[J].体育科学,2004,24(11):26-29,78. [88] HOLLOSZY JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):2278-2282. [89] HOOD DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab. 2009;34(3):465-472. [90] LITTLE JP, SAFDAR A, WILKIN GP, et al. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010;588(Pt 6):1011-1022. [91] EGAN B, ZIERATH JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162-184. [92] HOLLOSZY JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):2278-2282. [93] GRANATA C, OLIVEIRA RS, LITTLE JP, et al. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J. 2016;30(2):959-970. [94] GIBALA MJ, LITTLE JP, MACDONALD MJ, et al. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077-1084. [95] BURGOMASTER KA, HUGHES SC, HEIGENHAUSER GJ, et al. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol (1985). 2005;98(6): 1985-1990. [96] MACINNIS MJ, GIBALA MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915-2930. [97] SARASTE M. Oxidative phosphorylation at the fin de siècle. Science. 1999;283(5407):1488-1493. [98] YAN Z, LIRA VA, GREENE NP. Exercise training-induced regulation of mitochondrial quality. Exerc Sport Sci Rev. 2012;40(3):159-164. [99] SHORT KR, BIGELOW ML, KAHL J, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A. 2005;102(15):5618-5623. [100] 林建健,宋洁.运动调控线粒体动力学变化的研究进展 [J].中国组织工程研究,2024,28(11):1767-1771. [101] 郭辉,孔健达,田春兰.线粒体自噬相关受体蛋白和信号通路在运动防治肌少症中的作用[J].中国组织工程研究,2024,28(27):4397-4404. [102] SPINA RJ, CHI MM, HOPKINS MG, et al. Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. J Appl Physiol (1985). 1996;80(6):2250-2254. [103] GIBALA MJ, LITTLE JP, VAN ESSEN M, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006; 575(Pt 3):901-911. [104] BURGOMASTER KA, HOWARTH KR, PHILLIPS SM, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;586(1):151-160. [105] DAUSSIN FN, ZOLL J, DUFOUR SP, et al. Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol. 2008; 295(1):R264-R272. [106] EDGE J, BISHOP D, GOODMAN C. The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol. 2006;96(1): 97-105. [107] 田浩,陈丁丁,王登,等.神经肌肉训练:研究热点、前沿变迁与趋势展望[J].中国组织工程研究,2025,29(24):5148-5157. [108] BUCHHEIT M, LAURSEN PB. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313-338. [109] MCAINCH AJ. The influence of high-intensity interval training on brain-derived neurotrophic factor levels and cognitive function. Physiol Rep. 2013;1(6):e00157. [110] KINNUNEN H. Effects of high-intensity interval training on the neural control of muscle metabolism in humans. J Physiol. 2014;592(15): 3207-3220. [111] DIETRICH A, MCDANIEL J. Endurance exercise and the brain: a review of the evidence for the role of exercise in improving cognitive function. J Cogn Neurosci. 2004;16(2):151-166. [112] CHEN SH. Effects of high-intensity interval training on plasma catecholamine levels in young men. J Exerc Nutrition Biochem. 2014; 18(4):383-387. [113] 黎涌明.动作与能量代谢视角下的体能[J].体育科研,2022,43(5): 1-6+35. |
[1] | 蒋 阳, 彭 皓, 宋艳萍, 姚 娜, 宋粤渝, 尹兴晓, 李艳琪, 陈奇刚. 等长运动降低静息血压:调节因素与剂量效应的荟萃分析[J]. 中国组织工程研究, 2026, 30(4): 975-986. |
[2] | 李兆进, 郑鹏程, 孔健达, 朱腾旗, 姜付高. 基于不同组织和器官角度回顾PGC-1α在运动抗衰老中的作用[J]. 中国组织工程研究, 2024, 28(29): 4717-4725. |
[3] | 王金玲, 黄夏荣, 屈萌艰, 黄福锦, 尹林伟, 钟培瑞, 刘 静, 孙光华, 廖 阳, 周 君. 运动训练老年骨质疏松大鼠骨量及骨微结构的变化[J]. 中国组织工程研究, 2023, 27(5): 676-682. |
[4] | 岑婉仪, 龚宇萱, 黄镇东, 胡芯雨, 林 君, 阙可欣, 李太良, 王润妹, 宋成宪. 高频超声观察不同训练动作对产后腹直肌分离间距的即时影响[J]. 中国组织工程研究, 2023, 27(32): 5091-5096. |
[5] | 陈蓉, 曾庆, 巩泽, 黄国志. 不同模式下血流限制治疗老年性肌肉减少症的效果与安全因素[J]. 中国组织工程研究, 2021, 25(32): 5215-5221. |
[6] | 尹 练, 赵 静, 雷雪梅, 李苗苗, 王 坤, 张庭然, 罗 炯. 运动产生鸢尾素对心肌纤维化的影响[J]. 中国组织工程研究, 2020, 24(23): 3730-3736. |
[7] | 李苗苗, 罗 炯, 张庭然, 欧阳一毅, 周成林. 骨质代谢与运动训练:骨重塑与骨细胞增殖[J]. 中国组织工程研究, 2019, 23(34): 5544-5549. |
[8] | 闫平平,王 坤,罗 炯. 跳跃冲击诱导核因子κB对骨质代谢的调节机制及效果分析[J]. 中国组织工程研究, 2019, 23(34): 5550-5557. |
[9] | 廖帅雄, 张国栋, 宋 刚. 4周运动训练小鼠骨骼肌脂滴包被蛋白、比较基因识别58及肌内三酰甘油的表达[J]. 中国组织工程研究, 2019, 23(3): 354-360. |
[10] | 苏坤霞. 不同强度耐力运动影响高脂诱导肥胖模型小鼠血清Irisin含量、骨骼肌PGC-1α、FNDC5、PPARδ蛋白的表达[J]. 中国组织工程研究, 2019, 23(3): 427-434. |
[11] | 任志超. 有氧耐力训练高脂诱导肥胖模型小鼠白色脂肪组织和血浆PPARγ的水平变化[J]. 中国组织工程研究, 2019, 23(19): 3056-3061. |
[12] | 黎晋添. 踏车训练影响老年与年轻人体适能及脑部动作皮质的活化[J]. 中国组织工程研究, 2018, 22(16): 2496-2501. |
[13] | 安普天,朱文文,李脉超,崔晓娟,周 燕,张益萌,金利新. 运动训练对背根神经节切除模型大鼠运动功能的影响[J]. 中国组织工程研究, 2018, 22(16): 2537-2541. |
[14] | 侯希贺,张玲莉,李 慧,吴 伟. 运动训练与骨代谢和脂代谢:运动强度和持续时间是影响的重要因素[J]. 中国组织工程研究, 2018, 22(12): 1950-1955. |
[15] | 罗海杰,柯松坚,林彩娜,万 青,栗 晓,刘翠翠,马 超,伍少玲. 运动训练对椎间盘退变模型大鼠疼痛及细胞外基质合成的影响[J]. 中国组织工程研究, 2017, 21(20): 3176-3182. |
1.1.4 检索词 中文检索词为:“乳酸阈值训练,双乳酸阈值训练,乳酸训练,阈值训练,耐力训练,挪威训练法,挪威训练模式,挪威训练经验”。英文检索词为:“Lactate
Threshold Training,Double lactate Threshold Training,Lactate Training,Threshold Training,Endurance Training,Norwegian Training Method,Norwegian Training Mode,Norwegian Training Experience”。
1.1.5 检索文献类型 研究原著、述评和病例报告等。
1.1.6 检索策略 以PubMed数据库为例,检索策略见图1。
1.1.7 检索文献量 中文文献35篇(中国知网15篇、维普数据库14篇、万方数据库6篇、读秀数据库0篇),英文文献78篇(PubMed数据库10篇、Web of Science数据库13篇、Embase数据库2篇、Medline数据库5篇、Cochrane Library数据库17篇、SportDissus数据库29篇,另外2篇为参考文献追溯获得)。
1.2 纳入标准 ①训练内容为DLTT;②训练对象为具有一定运动水平的运动者;③运动者所从事的运动项目为:田径场地赛800-10 000 m、全程/半程马拉松、越野跑、竞走、游泳、自行车等体能主导类周期性运动项目;④研究结局指标为运动者的运动成绩或竞技表现。
1.3 排除标准 ①训练内容非DLTT;②训练对象不具有一定运动基础、运动能力;③研究结局指标不符;④重复发表或质量较差的文献;⑤动物实验文献、非中英文文献。
1.4 资料整合 共检索到103篇文献(中文35篇、英文78篇),其中排除93篇,实际纳入8篇(英文8篇)。文献筛选流程详见图2。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||