中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (4): 936-948.doi: 10.12307/2025.963
• 组织构建综述 tissue construction review • 上一篇 下一篇
余诗宇,俞苏桐,徐 杨,镇祥燕,韩凤选
收稿日期:
2024-11-12
接受日期:
2024-12-20
出版日期:
2026-02-08
发布日期:
2025-05-20
通讯作者:
韩凤选,博士,教授,苏州大学骨科研究所,江苏省苏州市 215006
作者简介:
余诗宇,女,2002年生,重庆市人,汉族,苏州大学本科在读,主要从事口腔生物医用材料、药物控释材料、口腔黏膜病、口腔组织工程研究。
基金资助:
Yu Shiyu, Yu Sutong, Xu Yang, Zhen Xiangyan, Han Fengxuan
Received:
2024-11-12
Accepted:
2024-12-20
Online:
2026-02-08
Published:
2025-05-20
Contact:
Han Fengxuan, MD, Professor, Orthopedics Institution of Soochow University, Suzhou 215006, Jiangsu Province, China
About author:
Yu Shiyu, Orthopedics Institution of Soochow University, Suzhou 215006, Jiangsu Province, China
Supported by:
摘要:
文题释义:
口腔黏膜下纤维化:是一种具有较高恶性转化潜力的慢性疾病,可侵犯口腔的任何部位。由于固有层的纤维组织变性和上皮萎缩,从而引起黏膜硬化,形成条索,最终导致牙关紧闭,妨碍口腔各种功能的发挥。
组织工程:是一门以细胞生物学和材料科学相结合进行体外或体内构建组织或器官的新兴学科。
背景:口腔黏膜下纤维化是一种容易恶变的慢性进行性疾病,传统治疗手段效果不理想,且存在局限性。组织工程作为一门新兴学科,为口腔黏膜下纤维化的治疗开辟了新路径。
目的:综述口腔黏膜下纤维化发病机制以及治疗的最新进展,总结并分析间充质干细胞、生物支架材料、组织工程口腔黏膜在口腔黏膜下纤维化中的作用与研究进展,为组织工程方法治疗口腔黏膜下纤维化的研究及临床应用提供思路。
方法:第一作者于2024年10月应用计算机在PubMed和中国知网数据库检索1970年1月至2024年10月相关文献,以“oral submucous fibrosis,tissue engineering,mesenchymal stem cells,bioscaffold materials”为英文检索词,以“口腔黏膜下纤维化,组织工程,间充质干细胞,生物支架材料”为中文检索词,最终纳入166篇文献进行分析。
结果与结论:①口腔黏膜下纤维化的发病机制复杂,许多因素与口腔黏膜下纤维化密切相关,但最终都通过促进胶原蛋白沉积并加速成纤维细胞增殖来促进口腔黏膜下纤维化的发展;②传统口腔黏膜下纤维化治疗手段存在患者依从性低、效果不理想等问题,急需新的治疗策略;③间充质干细胞因免疫调节、抗氧化特性,调控病理微环境,减轻炎症并抑制纤维化进程,为口腔黏膜下纤维化治疗提供新思路;④生物材料作为药物和细胞递送载体,调节病理微环境,在各类纤维化疾病中得以应用,为口腔黏膜下纤维化的治疗提供新方案;⑤组织工程口腔黏膜可作为自体黏膜替代物来促进组织修复,也为疾病模型的建立提供了基础;⑥组织工程治疗策略对于口腔黏膜下纤维化的综合治疗潜力巨大,现已有一些研究将间充质干细胞与生物材料用于治疗口腔黏膜下纤维化,但仍需进一步完善与创新,对于未来探索基于组织工程化的口腔黏膜下纤维化治疗方案具有重要意义。
中图分类号:
余诗宇, 俞苏桐, 徐 杨, 镇祥燕, 韩凤选. 组织工程治疗策略在口腔黏膜下纤维化中的研究与应用进展[J]. 中国组织工程研究, 2026, 30(4): 936-948.
Yu Shiyu, Yu Sutong, Xu Yang, Zhen Xiangyan, Han Fengxuan. Advances in research and application of tissue engineering therapeutic strategies in oral submucous fibrosis[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 936-948.
[1] RAY JG, CHATTERJEE R, CHAUDHURI K. Oral submucous fibrosis: A global challenge. Rising incidence, risk factors, management, and research priorities. Periodontol 2000. 2019;80(1):200-212. [2] ARORA R, ADWANI D, NAPHADE M, et al. Malignant conversion of oral submucous fibrosis in surgically treated case. J Clin Diagn Res. 2014;8(10):ZD31-32. [3] GUO ZX, ZHANG Z, YAN JF, et al. A biomaterial-based therapy using a sodium hyaluronate/bioglass composite hydrogel for the treatment of oral submucous fibrosis. Acta Biomater. 2023;157:639-654. [4] 罗崇岱.高压氧对博来霉素诱导的口腔黏膜下纤维化模型E钙粘素表达的影响[D].长沙:中南大学,2012. [5] AVERINENI RK, SUNDERAJAN SG, MUTALIK S, et al. Development of mucoadhesive buccal films for the treatment of oral sub-mucous fibrosis: a preliminary study. Pharm Dev Technol. 2009;14(2):199-207. [6] 余立江,邵晓琳,龙笑,等.三维组织工程化口腔黏膜体外构建研究[J].中国实用口腔科杂志,2018,11(5):291-294. [7] KHEUR S, SANAP A, KHARAT A, et al. Hypothesizing the therapeutic potential of mesenchymal stem cells in oral submucous fibrosis. Med Hypotheses. 2020;144:110204. [8] SHAO Z, XU J, XU X, et al. Exosomes Derived from Human Adipose Mesenchymal Stem Cells Inhibits Fibrosis and Treats Oral Submucous Fibrosis via the miR-181a-5p/Smad2 Axis. Tissue Eng Regen Med. 2024;21(1):123-135. [9] BINNIE WH, CAWSON RA. A new ultrastructural finding in oral submucous fibrosis. Br J Dermatol. 1972;86(3):286-290. [10] PINDBORG JJ, CHAWLA TN, SRIVASTAVA AN, et al. Clinical aspects of oral submucous fibrosis. Acta Odontol Scand. 1964;22:679-691. [11] QIN X, NING Y, ZHOU L, et al. Oral Submucous Fibrosis: Etiological Mechanism, Malignant Transformation, Therapeutic Approaches and Targets. Int J Mol Sci. 2023;24(5):4992. [12] 张晶,代佳慧,代文婷,等.槟榔生物碱致癌性、致口腔黏膜下纤维化及兴奋作用等活性研究进展[J].食品与发酵工业,2023, 49(18):356-364. [13] ZHANG P, CHUA NQE, DANG S, et al. Molecular Mechanisms of Malignant Transformation of Oral Submucous Fibrosis by Different Betel Quid Constituents-Does Fibroblast Senescence Play a Role? Int J Mol Sci. 2022;23(3):1637. [14] ARORA S, SQUIER C. Areca nut trade, globalisation and its health impact: perspectives from India and South-east Asia. Perspect Public Health. 2019;139(1):44-48. [15] GUPTA AK, TULSYAN S, THAKUR N, et al. Chemistry, metabolism and pharmacology of carcinogenic alkaloids present in areca nut and factors affecting their concentration. Regul Toxicol Pharmacol. 2020;110:104548. [16] YANG SF, TSAI CH, CHANG YC. The upregulation of heat shock protein 47 expression in human buccal fibroblasts stimulated with arecoline. J Oral Pathol Med. 2008;37(4):206-210. [17] 禹洁,左巧娟,伍春华,等.FLG、分泌型卷曲相关蛋白1、转化生长因子β1在口腔黏膜下纤维化患者中的表达[J].北京口腔医学, 2022,30(6):398-401. [18] LEE SS, CHEN YJ, TSAI CH, et al. Elevated transglutaminase-2 expression mediates fibrosis in areca quid chewing-associated oral submucocal fibrosis via reactive oxygen species generation. Clin Oral Investig. 2016;20(5):1029-1034. [19] LIAO YW, YU CC, HSIEH CW, et al. Aberrantly downregulated FENDRR by arecoline elevates ROS and myofibroblast activation via mitigating the miR-214/MFN2 axis. Int J Biol Macromol. 2024;264(Pt 1):130504. [20] ILLEPERUMA RP, KIM DK, PARK YJ, et al. Areca nut exposure increases secretion of tumor-promoting cytokines in gingival fibroblasts that trigger DNA damage in oral keratinocytes. Int J Cancer. 2015;137(11): 2545-2557. [21] LIN KH, LIN CY, LIU CC, et al. Arecoline N-oxide: its mutagenicity and possible role as ultimate carcinogen in areca oral carcinogenesis. J Agric Food Chem. 2011;59(7):3420-3428. [22] KO AM, TU HP, KO YC. Systematic Review of Roles of Arecoline and Arecoline N-Oxide in Oral Cancer and Strategies to Block Carcinogenesis. Cells. 2023;12(8):1208. [23] SACHDEV PK, FREELAND-GRAVES J, BERETVAS SN, et al. Zinc, Copper, and Iron in Oral Submucous Fibrosis: A Meta-Analysis. Int J Dent. 2018; 2018:3472087. [24] HE XF, WANG H, TIAN Y, et al. Evaluation of Copper Levels in Dental Calculus of OSF Patients with Chewing Dried Areca-Nut Quids in Hunan Province of Mainland China. Biol Trace Elem Res. 2023;201(2):677-682. [25] AYINAMPUDI BK, NARSIMHAN M. Salivary copper and zinc levels in oral pre-malignant and malignant lesions. J Oral Maxillofac Pathol. 2012;16(2):178-182. [26] ARAKERI G, VISHAL RAO US, PATIL S, et al. Evaluation of fluoride levels in areca nut, tobacco, and commercial smokeless tobacco products: a pilot study. Br J Oral Maxillofac Surg. 2024;62(1):76-82. [27] WANG L, TANG Z. Immunopathogenesis of oral submucous fibrosis by chewing the areca nut. J Leukoc Biol. 2022;111(2):469-476. [28] WANG SY, ZHANG SJ, MENG HF, et al. DPSCs regulate epithelial-T cell interactions in oral submucous fibrosis. Stem Cell Res Ther. 2024; 15(1):113. [29] LIU S, LIU Z, SHAN Z, et al. Skewed Th17/Treg balance during progression and malignant transformation of oral submucous fibrosis. Oral Dis. 2022; 28(8):2119-2130. [30] WU D, LIU X, ZHOU T, et al. The expression of Th17/Treg in oral submucosal fibrosis carcinogenesis and the significance in the development of mucosal lesions. Cell Mol Biol (Noisy-le-grand). 2023; 69(9):84-88. [31] MOHAPATRA D, PANDA S, MOHANTY N, et al. Comparison of Immunohistochemical Markers in Oral Submucous Fibrosis and Oral Submucous Fibrosis Transformed to Oral Squamous Cell Carcinoma-A Systematic Review and Meta-Analysis. Int J Mol Sci. 2023;24(14):11771. [32] XU Z, CHEN D, HU Y, et al. Anatomically distinct fibroblast subsets determine skin autoimmune patterns. Nature. 2022;601(7891): 118-124. [33] SUTHERLAND TE, DYER DP, ALLEN JE. The extracellular matrix and the immune system: A mutually dependent relationship. Science. 2023;379(6633):eabp8964. [34] ZHOU S, CHEN L, MASHRAH M, et al. Expression and promoter methylation of Wnt inhibitory factor-1 in the development of oral submucous fibrosis. Oncol Rep. 2015;34(5):2636-2642. [35] SUDHAKARAN A, HALLIKERI K, BABU B. p16 as an independent marker for detection of high-risk HPV in oral submucous fibrosis and oral squamous cell carcinoma. Indian J Pathol Microbiol. 2019;62(4):523-528. [36] KUNDU P, PANT I, JAIN R, et al. Genome-wide DNA methylation changes in oral submucous fibrosis. Oral Dis. 2022;28(4):1094-1103. [37] TAN Y, HUANG Y, GUO L, et al. HLA-DQB1 Allele Polymorphism Associated with Oral Submucous Fibrosis in Hunan, China. J Immunol Res. 2024;2024:8757860. [38] MANNAN A, BHINDER MA, SADIA H, et al. Association of Oral Submucous Fibrosis Risk with <em>GSTM1</em> and <em>GSTT1</em> Gene Polymorphisms. J Coll Physicians Surg Pak. 2024;34(3):296-301. [39] 宋子毅,杨超,张云龙,等.基于基因表达综合数据库芯片挖掘结合网络药理学与分子对接探讨芒果苷治疗口腔黏膜下纤维化的机制研究[J].华西口腔医学杂志,2024,42(4):444-451. [40] SHARMA M, HUNTER KD, FONSECA FP, et al. Emerging role of cellular senescence in the pathogenesis of oral submucous fibrosis and its malignant transformation. Head Neck. 2021;43(10):3153-3164. [41] PENG CY, LIAO YW, LU MY, et al. Positive Feedback Loop of SNAIL-IL-6 Mediates Myofibroblastic Differentiation Activity in Precancerous Oral Submucous Fibrosis. Cancers (Basel). 2020;12(6):1611. [42] PANT I, KUMAR N, KHAN I, et al. Role of Areca Nut Induced TGF-β and Epithelial-Mesenchymal Interaction in the Pathogenesis of Oral Submucous Fibrosis. PLoS One. 2015;10(6):e0129252. [43] WANG W, XIONG H, HU Z, et al. Experimental study on TGF-β1-mediated CD147 expression in oral submucous fibrosis. Oral Dis. 2018; 24(6):993-1000. [44] HU HH, CHEN DQ, WANG YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76-83. [45] XIE C, ZHONG L, FENG H, et al. Exosomal miR-17-5p derived from epithelial cells is involved in aberrant epithelium-fibroblast crosstalk and induces the development of oral submucosal fibrosis. Int J Oral Sci. 2024;16(1):48. [46] RAI A, PARVEEN S, SHREE P, et al. Salivary transforming growth factor beta in oral submucous fibrosis: A diagnostic and predictive marker. J Cancer Res Ther. 2024;20(1):275-280. [47] WANG Z, HAN Y, PENG Y, et al. Senescent epithelial cells remodel the microenvironment for the progression of oral submucous fibrosis through secreting TGF-β1. PeerJ. 2023;11:e15158. [48] ABDUL AZIZ SHAIKH S, DENNY EC, KUMARCHANDRA R, et al. Evaluation of salivary tumor necrosis factor α as a diagnostic biomarker in oral submucosal fibrosis and squamous cell carcinoma of the oral cavity and oropharynx: a cross sectional observational study. Front Oral Health. 2024;5:1375162. [49] PAPANDREOU I, CAIRNS RA, FONTANA L, et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187-197. [50] LEE P, CHANDEL NS, SIMON MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21(5):268-283. [51] TSAI CH, LEE SS, CHANG YC. Hypoxic regulation of plasminogen activator inhibitor-1 expression in human buccal mucosa fibroblasts stimulated with arecoline. J Oral Pathol Med. 2015;44(9):669-673. [52] GAWRONSKA-KOZAK B, MACHCINSKA-ZIELINSKA S, WALENDZIK K, et al. Hypoxia and Foxn1 alter the proteomic signature of dermal fibroblasts to redirect scarless wound healing to scar-forming skin wound healing in Foxn1-/- mice. BMC Biol. 2024;22(1):193. [53] R K, CHANDRA A, JAIN T, et al. An enigmatic pathogenetic mechanism of hypoxia inducible factor - 1/2 alpha in the progression of fibrosis of oral submucous fibrosis and its malignant transformation: A systematic review and meta-analysis. Arch Oral Biol. 2024;162:105944. [54] YANG X, ZHAO H, LI R, et al. Stromal thrombospondin 1 suppresses angiogenesis in oral submucous fibrosis. Int J Oral Sci. 2024;16(1):17. [55] PANDIAR D, NAIR SK, BOLOGNA-MOLINA R, et al. Correlation between Vascularity and Advancing Histological Grades of Oral Submucous Fibrosis with a Plausible Role in Malignisation: Systematic review of a persisting matter of conflict. Sultan Qaboos Univ Med J. 2024;24(2): 152-160. [56] MINO-OKA A, IZAWA T, SHINOHARA T, et al. Roles of hypoxia inducible factor-1α in the temporomandibular joint. Arch Oral Biol. 2017;73: 274-281. [57] GUPTA SR, SHARMA A, GUPTA N, et al. Single nucleotide polymorphisms and serologic levels of hypoxia-inducible factor1 α and vascular endothelial growth factor are associated with increased risk of oral submucous fibrosis in gutka users among a North Indian population. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;130(5):557-564. [58] SHARMA E, TYAGI N, GUPTA V, et al. Role of angiogenesis in oral submucous fibrosis using vascular endothelial growth factor and CD34: An immunohistochemical study. Indian J Dent Res. 2019;30(5):755-762. [59] SENEVIRATHNA K, MAHAKAPUGE TAN, JAYAWARDANA NU, et al. Serum mRNA levels of cytokeratin-19 and vascular endothelial growth factor in oral squamous cell carcinoma and oral potentially malignant disorders using RT-PCR. BMC Oral Health. 2024;24(1):1062. [60] LIN F, XIAO T, WANG B, et al. Mechanisms and markers of malignant transformation of oral submucous fibrosis. Heliyon. 2023;10(1):e23314. [61] WANG J, JIANG C, LI N, et al. The circEPSTI1/mir-942-5p/LTBP2 axis regulates the progression of OSCC in the background of OSF via EMT and the PI3K/Akt/mTOR pathway. Cell Death Dis. 2020;11(8):682. [62] LING Z, CHENG B, TAO X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer. 2021;148(7):1548-1561. [63] ZANG W, LIU J, GENG F, et al. Butyrate promotes oral squamous cell carcinoma cells migration, invasion and epithelial-mesenchymal transition. PeerJ. 2022;10:e12991. [64] XU HQ, GUO ZX, YAN JF, et al. Fibrotic Matrix Induces Mesenchymal Transformation of Epithelial Cells in Oral Submucous Fibrosis. Am J Pathol. 2023;193(9):1208-1222. [65] 赵国强,王佳婷,郑灵娥,等.上皮-间质转化在口腔黏膜下纤维性变中的作用[J].医学研究杂志,2017,46(3):111-115. [66] MIRO C, DI CICCO E, AMBROSIO R, et al. Thyroid hormone induces progression and invasiveness of squamous cell carcinomas by promoting a ZEB-1/E-cadherin switch. Nat Commun. 2019;10(1):5410. [67] XIE C, LI Z, HUA Y, et al. Identification of a BRAF/PA28γ/MEK1 signaling axis and its role in epithelial-mesenchymal transition in oral submucous fibrosis. Cell Death Dis. 2022;13(8):701. [68] ANTAR SA, ASHOUR NA, MARAWAN ME, et al. Fibrosis: Types, Effects, Markers, Mechanisms for Disease Progression, and Its Relation with Oxidative Stress, Immunity, and Inflammation. Int J Mol Sci. 2023; 24(4):4004. [69] WYNN TA, RAMALINGAM TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028-1040. [70] SADAKSHARAM J, MAHALINGAM S. Evaluation of Oral Pentoxifylline in the Management of Oral Submucous Fibrosis - An Ultrasonographic Study. Contemp Clin Dent. 2017;8(2):200-204. [71] SHIL M, GOSWAMI P, GAIKWAD TV, et al. Efficacy of Oral Colchicine and Intralesional Hyaluronidase with and without Ultrasound Therapy in the Management of Oral Submucous Fibrosis-A Comparative Study. J Pharm Bioallied Sci. 2024;16(Suppl 1):S586-S588. [72] 唐瞻贵,成雨熹.口腔黏膜下纤维性变临床诊治的研究进展[J].口腔医学研究,2022,38(8):705-709. [73] LEUNG YY, YAO HUI LL, et al. Colchicine--Update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum. 2015;45(3): 341-350. [74] JAMES L, SHETTY A, RISHI D, et al. Management of Oral Submucous Fibrosis with Injection of Hyaluronidase and Dexamethasone in Grade III Oral Submucous Fibrosis: A Retrospective Study. J Int Oral Health. 2015;7(8):82-85. [75] TP B, T AG, VARGHESE M, et al. Evaluation of Therapeutic Efficacy of Different Treatment Modalities in Oral Submucous Fibrosis: A Comparative Study. J Contemp Dent Pract. 2019;20(3):390-394. [76] MEHTA CH, PALIWAL S, MUTTIGI MS, et al. Polyphenol-based targeted therapy for oral submucous fibrosis. Inflammopharmacology. 2023;31(5):2349-2368. [77] ARAKERI G, PATIL S, MADDUR N, et al. Long-term effectiveness of lycopene in the management of oral submucous fibrosis (OSMF): A 3-years follow-up study. J Oral Pathol Med. 2020;49(8):803-808. [78] GUPTA N, KALASKAR A, KALASKAR R. Efficacy of lycopene in management of Oral Submucous Fibrosis- A systematic review and meta-analysis. J Oral Biol Craniofac Res. 2020;10(4):690-697. [79] SARAN G, UMAPATHY D, MISRA N, et al. A comparative study to evaluate the efficacy of lycopene and curcumin in oral submucous fibrosis patients: A randomized clinical trial. Indian J Dent Res. 2018; 29(3):303-312. [80] 刘昊泽,张善林,马微,等.螺旋藻藻蓝蛋白对乙醇致氧化应激小鼠抗氧化能力的影响[J].中国生物制品学杂志,2023,36(11):1301-1305. [81] 佘琴,石忠峰.螺旋藻抗氧化活性研究进展[J].广东药学院学报, 2014, 30(2):249-252. [82] KANJANI V, ANNIGERI RG, REVANAPPA MM, et al. Efficacy of Spirulina along with Different Physiotherapeutic Modalities in the Management of Oral Submucous Fibrosis. Ann Maxillofac Surg. 2019;9(1):23-27. [83] RAI A, SHRIVASTAVA PK, KUMAR A, et al. Comparative effectiveness of medicinal interventions for oral submucous fibrosis: A network meta-analysis. J Stomatol Oral Maxillofac Surg. 2023;124(3):101423. [84] YADAV M, ARAVINDA K, SAXENA VS, et al. Comparison of curcumin with intralesional steroid injections in Oral Submucous Fibrosis - A randomized, open-label interventional study. J Oral Biol Craniofac Res. 2014;4(3):169-173. [85] 张姗姗.姜黄素对口腔黏膜下纤维性变SD大鼠模型抗纤维化作用及机制的研究[D].长沙:中南大学,2012. [86] ZHANG L, TAN J, LIU Y, et al. Curcumin relieves arecoline-induced oral submucous fibrosis via inhibiting the LTBP2/NF-κB axis. Oral Dis. 2024; 30(4):2314-2324. [87] PÉREZ-LEAL M, LANCIANO F, FLACCO N, et al. Antioxidant treatments in patients with oral submucous fibrosis: A systematic review. J Oral Pathol Med. 2024;53(1):31-41. [88] DAI JP, ZHU DX, SHENG JT, et al. Inhibition of Tanshinone IIA, salvianolic acid A and salvianolic acid B on Areca nut extract-induced oral submucous fibrosis in vitro. Molecules. 2015;20(4):6794-6807. [89] ZHENG L, GUAN ZJ, PAN WT, et al. Tanshinone Suppresses Arecoline-Induced Epithelial-Mesenchymal Transition in Oral Submucous Fibrosis by Epigenetically Reactivating the p53 Pathway. Oncol Res. 2018;26(3):483-494. [90] 杨博,唐瞻贵.丹参联合醋酸曲安奈德注射液治疗口腔黏膜下纤维化的Meta分析[J].中成药,2018,40(10):2165-2169. [91] AL-MAWERI SA, ASHRAF S, LINGAM AS, et al. Aloe vera in treatment of oral submucous fibrosis: A systematic review and meta-analysis. J Oral Pathol Med. 2019;48(2):99-107. [92] ANURADHA A, PATIL B, ASHA VR. Evaluation of efficacy of aloe vera in the treatment of oral submucous fibrosis - a clinical study. J Oral Pathol Med. 2017;46(1):50-55. [93] SINGH N, HEBBALE M, MHAPUSKAR A, et al. Effectiveness of Aloe Vera and Antioxidant along with Physiotherapy in the Management of Oral Submucous Fibrosis. J Contemp Dent Pract. 2016;17(1):78-84. [94] RE K, PATEL S, GANDHI J, et al. Clinical utility of hyperbaric oxygen therapy in dentistry. Med Gas Res. 2019;9(2):93-100. [95] HOPF HW, GIBSON JJ, ANGELES AP, et al. Hyperoxia and angiogenesis. Wound Repair Regen. 2005;13(6):558-564. [96] ALMZAIEL AJ, BILLINGTON R, SMERDON G, et al. Hyperbaric oxygen enhances neutrophil apoptosis and their clearance by monocyte-derived macrophages. Biochem Cell Biol. 2015;93(4):405-416. [97] CANNELLOTTO M, YASELLS GARCÍA A, LANDA MS. Hyperoxia: Effective Mechanism of Hyperbaric Treatment at Mild-Pressure. Int J Mol Sci. 2024;25(2):777. [98] VADEPALLY AK, SALAVADI RK, SINHA R. A comparative clinical study on physiotherapy outcomes with wooden tongue depressors versus Heister jaw opener in oral submucous fibrosis patients. J Oral Biol Craniofac Res. 2019;9(3):263-267. [99] 谌静,吴颖芳,彭解英,等.张口训练增加口腔黏膜下纤维性变患者的张口度[J].中南大学学报(医学版),2021,46(7):731-735. [100] KHOLAKIYA Y, JOSE A, RAWAT A, et al. Surgical management of oral submucous fibrosis with “Seagull-nasolabial flap” combined with short-term oral pentoxifylline for preventing relapse. J Stomatol Oral Maxillofac Surg. 2020;121(5):512-516. [101] LAVIK E, LANGER R. Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol. 2004;65(1):1-8. [102] BERTHIAUME F, MAGUIRE TJ, YARMUSH ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2:403-430. [103] IZUMI K, FEINBERG SE. Skin and oral mucosal substitutes. Oral Maxillofac Surg Clin North Am. 2002;14(1):61-71. [104] SONG D, LI Z, SUN F, et al. Optimized administration of human embryonic stem cell-derived immunity-and-matrix regulatory cells for mouse lung injury and fibrosis. Stem Cell Res Ther. 2024;15(1):344. [105] YUAN Y, LI J, LU X, et al. Autophagy in hepatic progenitor cells modulates exosomal miRNAs to inhibit liver fibrosis in schistosomiasis. Front Med. 2024;18(3):538-557. [106] HSIAO YC, WANG IH, YANG TL. Fibrotic remodeling and tissue regeneration mechanisms define the therapeutic potential of human muscular progenitors. Bioeng Transl Med. 2022;8(2):e10439. [107] KOSKINEN HOLM C, QU C. Engineering a 3D In Vitro Model of Human Gingival Tissue Equivalent with Genipin/Cytochalasin D. Int J Mol Sci. 2022;23(13):7401. [108] JIANG W, XU J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020;53(1):e12712. [109] YANG X, LI Q, LIU W, et al. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment. Cell Mol Immunol. 2023;20(6):583-599. [110] YAO L, HU X, DAI K, et al. Mesenchymal stromal cells: promising treatment for liver cirrhosis. Stem Cell Res Ther. 2022;13(1):308. [111] WANG Y, HUANG B, JIN T, et al. Intestinal Fibrosis in Inflammatory Bowel Disease and the Prospects of Mesenchymal Stem Cell Therapy. Front Immunol. 2022;13:835005. [112] CHENG W, ZENG Y, WANG D. Stem cell-based therapy for pulmonary fibrosis. Stem Cell Res Ther. 2022;13(1):492. [113] LI Z, NIU S, GUO B, et al. Stem cell therapy for COVID-19, ARDS and pulmonary fibrosis. Cell Prolif. 2020;53(12):e12939. [114] TANG Q, LU B, HE J, et al. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration. Biomaterials. 2022; 280:121320. [115] ROCKEL JS, RABANI R, VISWANATHAN S. Anti-fibrotic mechanisms of exogenously-expanded mesenchymal stromal cells for fibrotic diseases. Semin Cell Dev Biol. 2020;101:87-103. [116] AGGARWAL S, PITTENGER MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4): 1815-1822. [117] HAN MM, HE XY, TANG L, et al. Nanoengineered mesenchymal stem cell therapy for pulmonary fibrosis in young and aged mice. Sci Adv. 2023;9(29):eadg5358. [118] XU JH, XU SQ, DING SL, et al. Bone marrow mesenchymal stem cells alleviate the formation of pathological scars in rats. Regen Ther. 2022; 20:86-94. [119] FANG F, HUANG RL, ZHENG Y, et al. Bone marrow derived mesenchymal stem cells inhibit the proliferative and profibrotic phenotype of hypertrophic scar fibroblasts and keloid fibroblasts through paracrine signaling. J Dermatol Sci. 2016;83(2):95-105. [120] LI Y, CHEN S, TAN J, et al. Combination therapy with DHA and BMSCs suppressed podocyte injury and attenuated renal fibrosis by modulating the TGF-β1/Smad pathway in MN mice. Ren Fail. 2023;45(1):2120821. [121] TSUJI K, KITAMURA S, WADA J. Immunomodulatory and Regenerative Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Renal Diseases. Int J Mol Sci. 2020;21(3):756. [122] XIANG E, HAN B, ZHANG Q, et al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res Ther. 2020;11(1):336. [123] LI Y, ZHANG W, GAO J, et al. Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway. Stem Cell Res Ther. 2016;7(1):102. [124] KANG Y, SONG Y, LUO Y, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate experimental non-alcoholic steatohepatitis via Nrf2/NQO-1 pathway. Free Radic Biol Med. 2022; 192:25-36. [125] ELMAHDY NA, SOKAR SS, SALEM ML, et al. Anti-fibrotic potential of human umbilical cord mononuclear cells and mouse bone marrow cells in CCl4- induced liver fibrosis in mice. Biomed Pharmacother. 2017;89:1378-1386. [126] HE S, WANG Q, CHEN L, et al. miR-100a-5p-enriched exosomes derived from mesenchymal stem cells enhance the anti-oxidant effect in a Parkinson’s disease model via regulation of Nox4/ROS/Nrf2 signaling. J Transl Med. 2023;21(1):747. [127] REGMI S, RAUT PK, PATHAK S, et al. Enhanced viability and function of mesenchymal stromal cell spheroids is mediated via autophagy induction. Autophagy. 2021;17(10):2991-3010. [128] WANG X, ZHAO S, LAI J, et al. Anti-Inflammatory, Antioxidant, and Antifibrotic Effects of Gingival-Derived MSCs on Bleomycin-Induced Pulmonary Fibrosis in Mice. Int J Mol Sci. 2021;23(1):99. [129] CAO L, SU H, SI M, et al. Tissue Engineering in Stomatology: A Review of Potential Approaches for Oral Disease Treatments. Front Bioeng Biotechnol. 2021;9:662418. [130] SHI Q, XIA Y, WU M, et al. Mi-BMSCs alleviate inflammation and fibrosis in CCl4-and TAA-induced liver cirrhosis by inhibiting TGF-β/Smad signaling. Mater Today Bio. 2024;25:100958. [131] 张思宇,马诗淇,王梦慈,等.皮肤组织工程支架及其材料在创面修复领域中的研究进展[J].协和医学杂志,2023,14(3):603-610. [132] 王忠朝,范丽苑,蔡炜,等.丝素蛋白支架修复颊黏膜缺损[J].中国组织工程研究,2016,20(12):1738-1744. [133] 蒋灿华,李超,石芳琼,等.异种脱细胞真皮基质修复膜在口腔黏膜下纤维性变手术治疗中的应用[J].上海口腔医学,2011,20(3): 273-277. [134] 程梦可,杨杜娟,刘佳.甲基丙烯酸酐改性明胶/经处理牙本质基质生物活性支架的制备及性能[J].中国组织工程研究,2024,28(22):3555-3560. [135] QI W, DONG N, WU L, et al. Promoting oral mucosal wound healing using a DCS-RuB2A2 hydrogel based on a photoreactive antibacterial and sustained release of BMSCs. Bioact Mater. 2022;23:53-68. [136] ZHANG X, HASANI-SADRABADI MM, ZARUBOVA J, et al. Immunomodulatory Microneedle Patch for Periodontal Tissue Regeneration. Matter. 2022;5(2):666-682. [137] MEHTA CH, VELAGACHERLA V, MANANDHAR S, et al. Development of Epigallocatechin 3-gallate-Loaded Hydrogel Nanocomposites for Oral Submucous Fibrosis. AAPS PharmSciTech. 2024;25(4):66. [138] CHENG X, YANG Y, LIAO Z, et al. Drug-loaded mucoadhesive microneedle patch for the treatment of oral submucous fibrosis. Front Bioeng Biotechnol. 2023;11:1251583. [139] ALTMAN AM, MATTHIAS N, YAN Y, et al. Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials. 2008; 29(10):1431-1442. [140] LIANG L, CUI R, ZHONG S, et al. Analysis of the potential role of photocurable hydrogel in patient-derived glioblastoma organoid culture through RNA sequencing. Biomater Sci. 2022;10(17):4902-4914. [141] LI X, LI Y, YU C, et al. ROS-Responsive Janus Au/Mesoporous Silica Core/Shell Nanoparticles for Drug Delivery and Long-Term CT Imaging Tracking of MSCs in Pulmonary Fibrosis Treatment. ACS Nano. 2023; 17(7):6387-6399. [142] LV Y, YU C, LI X, et al. ROS-activatable nanocomposites for CT imaging tracking and antioxidative protection of mesenchymal stem cells in idiopathic pulmonary fibrosis therapy. J Control Release. 2023;357: 249-263. [143] BAO H, CHENG S, LI X, et al. Functional Au nanoparticles for engineering and long-term CT imaging tracking of mesenchymal stem cells in idiopathic pulmonary fibrosis treatment. Biomaterials. 2022;288:121731. [144] QU C, BAO Z, ZHANG X, et al. A thermosensitive RGD-modified hydroxybutyl chitosan hydrogel as a 3D scaffold for BMSCs culture on keloid treatment. Int J Biol Macromol. 2019;125:78-86. [145] YAO Y, YANG L, FENG LF, et al. IGF-1C domain-modified hydrogel enhanced the efficacy of stem cells in the treatment of AMI. Stem Cell Res Ther. 2020;11(1):136. [146] NIE M, KONG B, CHEN G, et al. MSCs-laden injectable self-healing hydrogel for systemic sclerosis treatment. Bioact Mater. 2022;17:369-378. [147] WU T, ZHANG X, LIU Y, et al. Wet adhesive hydrogel cardiac patch loaded with anti-oxidative, autophagy-regulating molecule capsules and MSCs for restoring infarcted myocardium. Bioact Mater. 2022;21: 20-31. [148] 李兢思,李俊欣,王思炜,等.浅析生物医用材料中伤口敷料的研究现状[J].生物医学工程与临床,2023,27(6):818-823. [149] ZHOU C, YANG Z, XUN X, et al. De novo strategy with engineering a multifunctional bacterial cellulose-based dressing for rapid healing of infected wounds. Bioact Mater. 2021;13:212-222. [150] YANG C, ZHANG Y, ZHANG X, et al. An injectable, self-healing, and antioxidant collagen- and hyaluronic acid-based hydrogel mediated with gallic acid and dopamine for wound repair. Carbohydr Polym. 2023;320:121231. [151] ZHAO ZY, LI PJ, XIE RS, et al. Biosynthesis of silver nanoparticle composites based on hesperidin and pectin and their synergistic antibacterial mechanism. Int J Biol Macromol. 2022;214:220-229. [152] XU L, ZHAO K, MIAO J, et al. High-strength and anti-bacterial BSA/carboxymethyl chitosan/silver nanoparticles/calcium alginate composite hydrogel membrane for efficient dye/salt separation. Int J Biol Macromol. 2022;220:267-279. [153] AN H, GU Z, ZHOU L, et al. Janus mucosal dressing with a tough and adhesive hydrogel based on synergistic effects of gelatin, polydopamine, and nano-clay. Acta Biomater. 2022;149:126-138. [154] ZHENG W, HAO Y, WANG D, et al. Preparation of triamcinolone acetonide-loaded chitosan/fucoidan hydrogel and its potential application as an oral mucosa patch. Carbohydr Polym. 2021;272: 118493. [155] ZHANG W, BAO B, JIANG F, et al. Promoting Oral Mucosal Wound Healing with a Hydrogel Adhesive Based on a Phototriggered S-Nitrosylation Coupling Reaction. Adv Mater. 2021;33(48):e2105667. [156] XIANG Y, PAN Z, QI X, et al. A cuttlefish ink nanoparticle-reinforced biopolymer hydrogel with robust adhesive and immunomodulatory features for treating oral ulcers in diabetes. Bioact Mater. 2024;39: 562-581. [157] ZHAO M, WANG C, JI C, et al. Ascidian-Inspired Temperature-Switchable Hydrogels with Antioxidant Fullerenols for Protecting Radiation-Induced Oral Mucositis and Maintaining the Homeostasis of Oral Microbiota. Small. 2023;19(27):e2206598. [158] IZUMI K, YORTCHAN W, AIZAWA Y, et al. Recent trends and perspectives in reconstruction and regeneration of intra/extra-oral wounds using tissue-engineered oral mucosa equivalents. Jpn Dent Sci Rev. 2023;59:365-374. [159] YAMANE S, HIGA K, UMEZAWA T, et al. Engineered three-dimensional rabbit oral epithelial-mesenchymal-muscular hybrid sheets. Int J Oral Sci. 2016;8(3):145-154. [160] GRONBACH L, JURMEISTER P, SCHÄFER-KORTING M, et al. Primary Extracellular Matrix Enables Long-Term Cultivation of Human Tumor Oral Mucosa Models. Front Bioeng Biotechnol. 2020;8:579896. [161] GOULD SJ, FOEY AD, SALIH VM. An organotypic oral mucosal infection model to study host-pathogen interactions. J Tissue Eng. 2023;14: 20417314231197310. [162] ADELFIO M, MARTIN-MOLDES Z, ERNDT-MARINO J, et al. Three-Dimensional Humanized Model of the Periodontal Gingival Pocket to Study Oral Microbiome. Adv Sci (Weinh). 2023;10(12):e2205473. [163] RIAZ A, GIDVALL S, PRGOMET Z, et al. Three-Dimensional Oral Mucosal Equivalents as Models for Transmucosal Drug Permeation Studies. Pharmaceutics. 2023;15(5):1513. [164] SCHWAB R, HELLER M, PFEIFER C, et al. Full-thickness tissue engineered oral mucosa for genitourinary reconstruction: A comparison of different collagen-based biodegradable membranes. J Biomed Mater Res B Appl Biomater. 2021;109(4):572-583. [165] 金衍丰,谢弘.口腔黏膜组织工程材料在尿道重建的研究进展[J].现代泌尿外科杂志,2017,22(4):312-315. [166] BARBAGLI G, HEIDENREICH A, ZUGOR V, et al. Urothelial or oral mucosa cells for tissue-engineered urethroplasty: A critical revision of the clinical outcome. Asian J Urol. 2020;7(1):18-23. |
[1] | 吴妍廷, 李 宇, 廖金凤. 氧化镁纳米粒调控成骨与血管生成相关基因表达促进骨缺损愈合[J]. 中国组织工程研究, 2026, 30(8): 1885-1895. |
[2] | 蒋星海, 宋玉林, 李德津, 邵建敏, 徐军志, 刘华凯, 吴应国, 沈岳辉, 冯思诚. 血管内皮生长因子165基因转染骨髓间充质干细胞构建血管化两亲性肽凝胶模块[J]. 中国组织工程研究, 2026, 30(8): 1903-1911. |
[3] | 王奇飒, 卢雨征, 韩秀峰, 赵文玲, 石海涛, 徐 哲. 3D打印甲基丙烯酰化透明质酸/脱细胞皮肤水凝胶支架的细胞相容性[J]. 中国组织工程研究, 2026, 30(8): 1912-1920. |
[4] | 潘鸿飞, 庄圳冰, 徐白云, 杨章阳, 林恺瑞, 詹冰晴, 蓝靖涵, 高 恒, 张南波, 林家煜. 不同浓度金诺芬抑制M1型巨噬细胞功能及修复糖尿病小鼠伤口的价值[J]. 中国组织工程研究, 2026, 30(6): 1390-1397. |
[5] | 彭志伟, 陈 雷, 佟 磊. 木犀草素促进糖尿病小鼠创面愈合的作用与机制[J]. 中国组织工程研究, 2026, 30(6): 1398-1406. |
[6] | 吕晓凡, 黄 懿, 丁留成. 糖尿病膀胱病的线粒体机制与干预治疗[J]. 中国组织工程研究, 2026, 30(6): 1508-1515. |
[7] | 李林臻, 焦泓焯, 陈伟南, 张铭哲, 王建龙, 张君涛. 淫羊藿苷含药血清对脂多糖诱导人软骨细胞炎症损伤的影响[J]. 中国组织工程研究, 2026, 30(6): 1368-1374. |
[8] | 陈 驹, 郑锦畅, 梁 振, 黄成硕, 林 颢, 曾 莉. β-石竹烯对小鼠膝骨关节炎的作用及机制[J]. 中国组织工程研究, 2026, 30(6): 1341-1347. |
[9] | 温广伟, 甄颖豪, 郑泰铿, 周淑怡, 莫国业, 周腾鹏, 李海山, 赖以毅. 异银杏素对破骨细胞分化的影响和机制[J]. 中国组织工程研究, 2026, 30(6): 1348-1358. |
[10] | 李郝静, 王 新, 宋成林, 张胜男, 陈云昕. 上斜方肌处体外冲击波与运动控制训练治疗慢性非特异性颈痛[J]. 中国组织工程研究, 2026, 30(5): 1162-1170. |
[11] | 刘 煜, 雷森林, 周锦涛, 刘 辉, 李先辉. 有氧和抗阻运动改善肥胖相关认知障碍的作用机制[J]. 中国组织工程研究, 2026, 30(5): 1171-1183. |
[12] | 王正业, 刘万林, 赵振群. miRNA在激素诱导股骨头坏死机制中的研究进展[J]. 中国组织工程研究, 2026, 30(5): 1207-1214. |
[13] | 部洋洋, 宁新丽, 赵 琛. 关节腔注射治疗颞下颌关节骨关节炎:不同药物与多种联合治疗方案[J]. 中国组织工程研究, 2026, 30(5): 1215-1224. |
[14] | 文 凡, 向 阳, 朱 欢, 庹艳芳, 李 锋. 运动干预改善2型糖尿病患者的微血管功能[J]. 中国组织工程研究, 2026, 30(5): 1225-1235. |
[15] | 刘新月, 李春年, 李一卓, 徐世芳. 口腔牙槽骨缺损的再生修复[J]. 中国组织工程研究, 2026, 30(5): 1247-1259. |
1.1.7 检索策略 PubMed数据库和中国知网检索策略见图1。
1.1.8 检索文献量 共检索到文献2 654篇,其中中文文献300篇,英文文献2 354篇。
1.2 纳入与排除标准
1.2.1 纳入标准 ①有关OSF发病机制与治疗方式的文献;②组织工程三要素与OSF或纤维化相关的文献;③组织工程三要素与口腔黏膜修复相关的文献;④有关口腔黏膜下纤维化动物模型构建的文献;⑤同一领域中论点与证据可靠、内容详实的文献。
1.2.2 排除标准 ①与文章相关性较低或无关的文献;②内容陈旧、质量不高的文献;③重复性研究;④非中、英文文献;⑤无法获取全文的文献。
1.3 质量评估及筛选流程 通过剔除不符合纳入标准的文献,排除与研究目的相关性较低及内容重复、资料陈旧的文献,最终纳入中国知网18篇文献和 PubMed数据库148篇文献,共计166篇文献进行综述。
口腔黏膜下纤维化是一种容易恶变的慢性进行性疾病,它的发生与咀嚼槟榔、免疫调节异常、遗传易感等因素密切相关。目前传统治疗手段包括药物治疗、物理治疗、手术治疗等,但患者依从性低,治疗方式单一,导致效果不理想。近年来,组织工程治疗策略在其他各类纤维化疾病中的研究成为热点,给口腔黏膜下纤维化的治疗研究带来启发与灵感,为口腔黏膜下纤维化的综合治疗开辟了新路径。#br# 文章综述了口腔黏膜下纤维化发病机制以及治疗的最新进展,总结并分析间充质干细胞、生物支架材料、组织工程口腔黏膜在口腔黏膜下纤维化中的作用与研究进展,阐述了组织工程治疗策略对于实现口腔黏膜下纤维化的综合治疗和逆转纤维化的科学性与可行性,对于未来探索基于组织工程化的口腔黏膜下纤维化治疗方案,具有重要意义。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程#br#阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||