[1] CAMPBELL BC. Hyperacute ischemic stroke care-Current treatment and future directions. Int J Stroke. 2024;19(7):718-726.
[2] CHEN H, LEE JS, MICHEL P, et al. Endovascular Stroke Thrombectomy for Patients With Large Ischemic Core: A Review. JAMA Neurol. 2024; 81(10):1085-1093.
[3] LIU X, XIE C, WANG Y, et al. Ferritinophagy and Ferroptosis in Cerebral Ischemia Reperfusion Injury. Neurochem Res. 2024;49(8):1965-1979.
[4] BARANOVICOVA E, KALENSKA D, KAPLAN P, et al. Blood and Brain Metabolites after Cerebral Ischemia. Int J Mol Sci. 2023;24(24):17302.
[5] WANG Y, NIU H, LI L, et al. Anti-CHAC1 exosomes for nose-to-brain delivery of miR-760-3p in cerebral ischemia/reperfusion injury mice inhibiting neuron ferroptosis. J Nanobiotechnol. 2023;21(1):109.
[6] LIU H, ZHAO Z, YAN M, et al. Calycosin decreases cerebral ischemia/reperfusion injury by suppressing ACSL4-dependent ferroptosis. Arch Biochem Biophys. 2023;734:109488.
[7] LIU H, ZHANG TA, ZHANG WY, et al. Rhein attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through NRF2/SLC7A11/GPX4 pathway. Exp Neurol. 2023;369:114541.
[8] LIU X, DU Y, LIU J, et al. Ferrostatin-1 alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3β signaling pathway. Brain res bull. 2023;193:146-157.
[9] HUANG B, LANG X, LI X. The role of TIGAR in nervous system diseases. Front Aging Neurosci. 2022;14:1023161.
[10] WANG X, LI M, WANG F, et al. TIGAR reduces neuronal ferroptosis by inhibiting succinate dehydrogenase activity in cerebral ischemia. Free Radic Biol Med. 2024;216:89-105.
[11] TAN QL, ZHANG MX, YAO DH, et al. TIGAR Protects Against Adenine-Induced Ferroptosis in Human Proximal Tubular Epithelial Cells by Activating the mTOR/S6KP70 Axis. Nutr Cancer. 2023;75(6):1464-1472.
[12] LI M, LUO Q, CHEN X, et al. Screening of major hepatotoxic components of Tripterygium wilfordii based on hepatotoxic injury patterns. BMC Complement Med Ther. 2023;23(1):9.
[13] SONG J, HE GN, DAI L. A comprehensive review on celastrol, triptolide and triptonide: Insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes. Biomed Pharmacother. 2023;162:114705.
[14] LI Z, GENG Y, WU Q, et al. Triptonide, a Diterpenoid Displayed Anti-Inflammation, Antinociceptive, and Anti-Asthmatic Efficacy in Ovalbumin-Induced Mouse Model. Appl Biochem Biotechnol. 2023; 195(3):1736-1751.
[15] LI J, LI J, CAO Y, et al. Triptonide protects retinal cells from oxidative damage via activation of Nrf2 signaling. Int J Mol Med. 2024;54(3): doi: 10.3892/ijmm.2024.5400.
[16] ZHANG H, LI H, XUE J, et al. New facile enantio- and diastereo-selective syntheses of (-)-triptonide and (-)-triptolide. Org Biomol Chem. 2014; 12(5):732-736.
[17] ZHOU J, YE W, CHEN L, et al. Triptolide alleviates cerebral ischemia/reperfusion injury via regulating the Fractalkine/CX3CR1 signaling pathway. Brain Res Bull. 2024;211:110939.
[18] ZHENG Z, YAN G, XI N, et al. Triptolide Induces Apoptosis and Autophagy in Cutaneous Squamous Cell Carcinoma via Akt/mTOR Pathway. Anticancer Agents Med Chem. 2023;23(13):1596-1604.
[19] XIE J, ZHANG T, LI P, et al. Dihydromyricetin Attenuates Cerebral Ischemia Reperfusion Injury by Inhibiting SPHK1/mTOR Signaling and Targeting Ferroptosis. Drug Des Devel Ther. 2022;16:3071-3085.
[20] GARGALIONIS AN, PAPAVASSILIOU KA, PAPAVASSILIOU AG. mTOR Signaling: Recent Progress. Int J Mol Sci. 2024;25(5): doi: 10.3390/ijms25052587.
[21] LI Y, CHEN T, XUE Y, et al. DJ-1 inhibits ferroptosis in cerebral ischemia-reperfusion via ATF4/HSPA5 pathway. Neurochem Int. 2023;171: 105628.
[22] LONGA EZ, WEINSTEIN PR, CARLSON S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1): 84-91.
[23] LI H, HUI L, XU W, et al. Triptolide modulates the sensitivity of K562/A02 cells to adriamycin by regulating miR-21 expression. Pharm Biol. 2012;50(10):1233-1240.
[24] XU Y, WANG P, LI M, et al. Natural small molecule triptonide inhibits lethal acute myeloid leukemia with FLT3-ITD mutation by targeting Hedgehog/FLT3 signaling. Biomed Pharmacother. 2021;133:111054.
[25] CHEN JX, LI L, CANTRELL AC, et al. High Glucose Activates Prolyl Hydroxylases and Disrupts HIF-α Signaling via the P53/TIGAR Pathway in Cardiomyocyte. Cells. 2023;12(7): doi: 10.3390/cells12071060.
[26] TOSHIDA K, ITOH S, ISEDA N, et al. Impact of TP53-induced glycolysis and apoptosis regulator on malignant activity and resistance to ferroptosis in intrahepatic cholangiocarcinoma. Cancer Sci. 2024; 115(1):170-183.
[27] TANG J, CHEN L, QIN ZH, et al. Structure, regulation, and biological functions of TIGAR and its role in diseases. Acta Pharmacol Sin. 2021; 42(10):1547-1555.
[28] ZHANG T, LINGHU KG, TAN J, et al. TIGAR exacerbates obesity by triggering LRRK2-mediated defects in macroautophagy and chaperone-mediated autophagy in adipocytes. Autophagy. 2024;20(8):1741-1761.
[29] ZHANG DM, ZHANG T, WANG MM, et al. TIGAR alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury. Free Radic Biol Med. 2019;137:13-23.
[30] LIU M, ZHOU X, LI Y, et al. TIGAR alleviates oxidative stress in brain with extended ischemia via a pentose phosphate pathway-independent manner. Redox Biol. 2022;53:102323.
[31] LIU MY, LI HM, WANG XY, et al. TIGAR drives colorectal cancer ferroptosis resistance through ROS/AMPK/SCD1 pathway. Free Radic Biol Med. 2022;182:219-231.
[32] TAN QL, ZHANG MX, YAO DH, et al. TIGAR Protects Against Adenine-Induced Ferroptosis in Human Proximal Tubular Epithelial Cells by Activating the mTOR/S6KP70 Axis. Nutr Cancer. 2023;75(6):1464-1472.
[33] SI J, LIU B, QI K, et al. Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway. J Ethnopharmacol. 2023;315:116677.
[34] ZHAO T, FAN J, ABU-ZAID A, et al. Nuclear mTOR Signaling Orchestrates Transcriptional Programs Underlying Cellular Growth and Metabolism. Cells. 2024;13(9): doi: 10.3390/cells13090781.
[35] LOTFIMEHR H, MARDI N, NARIMANI S, et al. mTOR signalling pathway in stem cell bioactivities and angiogenesis potential. Cell Prolif. 2023; 56(12):e13499.
[36] DAVOODY S, ASGARI TAEI A, KHODABAKHSH P, et al. mTOR signaling and Alzheimer’s disease: What we know and where we are? CNS Neurosci Ther. 2024;30(4):e14463.
[37] LIU X, GUO B, LI Q, et al. mTOR in metabolic homeostasis and disease. Exp Cell Res. 2024;441(2):114173.
[38] LI Y, GAO J, LIU C, et al. USP22 knockdown protects against cerebral ischemia/reperfusion injury via destabilizing PTEN protein and activating the mTOR/TFEB pathway. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(11):3163-3175.
[39] SEKHAR KR, HANNA DN, CYR S, et al. Glutathione peroxidase 4 inhibition induces ferroptosis and mTOR pathway suppression in thyroid cancer. Sci Rep. 2022;12(1):19396.
[40] XIE Y, ZHAO G, LEI X, et al. Advances in the regulatory mechanisms of mTOR in necroptosis. Front Immunol. 2023;14:1297408.
[41] YANG Y, WU Q, SHAN X, et al. Ginkgolide B attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through disrupting NCOA4-FTH1 interaction. J Ethnopharmacol. 2024;318(Pt B): 116982.
[42] HU S, FEI Y, JIN C, et al. Ginsenoside Rd enhances blood-brain barrier integrity after cerebral ischemia/reperfusion by alleviating endothelial cells ferroptosis via activation of NRG1/ErbB4-mediated PI3K/Akt/mTOR signaling pathway. Neuropharmacology. 2024;251:109929. |