中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (35): 7611-7619.doi: 10.12307/2026.522
• 组织构建综述 tissue construction review • 上一篇 下一篇
纪 龙1,陈子扬1,2,靳 攀3,孔祥魁1,蒲 锐1,2
收稿日期:
2024-12-05
接受日期:
2025-01-25
出版日期:
2025-12-18
发布日期:
2025-05-07
通讯作者:
孔祥魁,副教授,硕士生导师,长江大学教育与体育学院,湖北省荆州市 434023
共同通讯作者:蒲锐,讲师,硕士生导师,长江大学教育与体育学院,运动人体科学实验室,湖北省荆州市 434023
作者简介:
纪龙,男,1998年生,山东省滨州市人,汉族,在读硕士,主要从事运动健康促进研究。
基金资助:
Ji Long1, Chen Ziyang1, 2, Jin Pan3, Kong Xiangkui1, Pu Rui1, 2
Received:
2024-12-05
Accepted:
2025-01-25
Online:
2025-12-18
Published:
2025-05-07
Contact:
Kong Xiangkui, Associate professor, Master’s supervisor, College of Education and Sports Sciences, Yangtze University, Jingzhou 434023, Hubei Province, China
Co-corresponding author: Pu Rui, Lecturer, Master’s supervisor, College of Education and Sports Sciences, Yangtze University, Jingzhou 434023, Hubei Province, China; Human Science Laboratory of Exercise, Yangtze University, Jingzhou 434023, Hubei Province, China
About author:
Ji Long, College of Education and Sports Sciences, Yangtze University, Jingzhou 434023, Hubei Province, China
Supported by:
摘要:
文题释义:
脂肪自噬:是一种针对脂滴进行选择性降解的新型脂质代谢机制,可通过调控脂滴的降解和脂肪酸的释放,参与脂质的代谢与转运,进而维持细胞内脂质的稳态。
非酒精性脂肪肝:是以肝脏脂质蓄积和脂肪变性为主要病理特征的慢性代谢性疾病。高脂饮食或不良生活方式可诱发肝脏炎症和组织损伤,能进一步进展为非酒精性脂肪肝炎、肝纤维化,甚至演变为肝硬化或肝细胞癌。
背景:脂肪自噬与多种慢性代谢性疾病密切相关,运动能够调控脂肪自噬延缓非酒精性脂肪肝的病理进程,已成为运动医学和生命科学领域中热门的研究之一。
目的:总结脂肪自噬对非酒精性脂肪肝的调控作用,以及运动介导脂肪自噬在改善非酒精性脂肪肝中的机制。
方法:检索1980-2025年中国知网和PubMed、Web of Science数据库的相关文献,中文检索词包括“脂肪自噬、脂质代谢、非酒精性脂肪肝、有氧运动、抗阻运动、有氧联合抗阻运动”;英文检索词包括“lipophagy,lipid metabolism,non-alcoholic fatty liver disease,aerobic exercise,resistance training,combined aerobic resistance exercise”,根据纳入和排除标准选择98篇文献进行归纳总结。
结果与结论:①脂肪自噬在非酒精性脂肪肝的防治中发挥着重要的调控作用;②不同运动方式均对脂肪自噬产生影响:有氧运动能够调节脂肪自噬相关因子的表达、增加自噬通量、提高溶酶体生物合成和促进脂肪酶分解,在脂肪自噬的调控中发挥有益效应;抗阻运动可提高脂肪自噬相关因子的表达;有氧联合抗阻运动能够提高脂肪的氧化率和改善胰岛素敏感性;③运动可通过改善肝脏炎症、胰岛素抵抗以及提升肝脏功能从而治疗非酒精性脂肪肝;④运动通过调控脂肪自噬减少脂质蓄积、抑制脂肪变性、减缓肝脏炎症和纤维化及改善胰岛素抵抗,在防治非酒精性脂肪肝中发挥关键作用。
https://orcid.org/0009-0007-6953-4456(纪龙)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
纪 龙, 陈子扬, 靳 攀, 孔祥魁, 蒲 锐, . 脂肪自噬、运动干预与非酒精性脂肪肝的防治[J]. 中国组织工程研究, 2025, 29(35): 7611-7619.
Ji Long, Chen Ziyang, , Jin Pan, Kong Xiangkui, Pu Rui, . Lipophagy, exercise intervention and prevention and treatment of nonalcoholic fatty liver disease[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7611-7619.
[1] LUDWIG J, VIGGIANO TR, MCGILL DB, et al. Nonalcoholic steatohepatitis:Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980;55(7): 434-438. [2] POUWELS S, SAKRAN N, GRAHAM Y, et al. Non-alcoholic fatty liver disease (NAFLD):a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 2022;14;22(1):63. [3] MASHEK DG. Hepatic lipid droplets:A balancing act between energy storage and metabolic dysfunction in NAFLD. Mol Metab. 2021;50:101-115. [4] SHIN DW. Lipophagy:Molecular Mechanisms and Implications in Metabolic Disorders. Mol Cells. 2020;43(8):686-693. [5] CHUN SK, LEE S, Yang MJ, et al. Exercise-Induced Autophagy in Fatty Liver Disease. Exercise and Sport Sciences Reviews. 2017;45:181-186. [6] KLIONSKY DJ. Autophagy:From phenomenology to molecularunderstanding in less than a decade. Nat Rev Mol Cell Biol. 2007;8(11):931-937. [7] SINGH R, KAUSHIK S, WANG Y, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131-5. [8] MIZUSHIMA N, KOMATSU M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728-741. [9] KWANTEN WJ, MARTINET W, MICHIELSEN PP, et al. Role of autophagy in the pathophysiology of nonalcoholic fatty liver disease: a controversial issue. World J Gastroenterol. 2014;20(23):7325-7338. [10] TASSET I, CUERVO AM. Role of chaperone-mediated autophagy in metabolism. FEBS J. 2016;283(13):2403-2413. [11] ZHANG H. Lysosomal acid lipase and lipid metabolism: new mechanisms, new questions, and new therapies. Curr Opin Lipidol. 2018;29(3):218-223. [12] JIN S, LI Y, XIA T, et al. Mechanisms and therapeutic implications of selective autophagy in nonalcoholic fatty liver disease. J Adv Res. 2025;67:317-329. [13] GLICK D, BARTH S, MACLEOD KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1): 3-12. [14] WIRTH M, JOACHIM J, TOOZE SA. Autophagosome formation--the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol. 2013;23(5):301-309. [15] TAKLA M, KESHRI S, Rubinsztein DC. The post-translational regulation of transcription factor EB (TFEB) in health and disease. EMBO Rep. 2023;24(11): e57574. [16] KAUSHIK S, CUERVO AM. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nature Celll Biol. 2015;17(6): 759-770. [17] IKAMI Y, TERASAWA K, SAKAMOTO K, et al. The two-domain architecture of LAMP2A regulates its interaction with Hsc70. Exp Cell Res. 2022;411(1):112986. [18] ZHANG S, PENG X, YANG S, et al. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis. 2022;13(2):132. [19] FILALI-MOUNCEF Y, HUNTER C, ROCCIO F, et al. The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy. 2022;18(1):50-72. [20] GE Y, ZHOU M, CHEN C, et al. Role of AMPK mediated pathways in autophagy and aging. Biochimie. 2022;195:100-113. [21] YANG JW, ZOU Y, CHEN J, et al. Didymin alleviates metabolic dysfunction-associated fatty liver disease (MAFLD) via the stimulation of Sirt1-mediated lipophagy and mitochondrial biogenesis. J Transl Med. 2023;21(1):921. [22] CHYAU CC, WANG HF, ZHANG WJ, et al. Antrodan Alleviates High-Fat and High-Fructose Diet-Induced Fatty Liver Disease in C57BL/6 Mice Model via AMPK/Sirt1/SREBP-1c/PPARγ Pathway. Int J Mol Sci. 2020;6;21(1):360. [23] LIU Y, LI Y, WANG J, et al. Salvia-Nelumbinis naturalis improves lipid metabolism of NAFLD by regulating the SIRT1/AMPK signaling pathway. BMC Complement Med Ther. 2022;22(1): 213. [24] WANG Y, LIU S, NI M, et al. Terf2ip deficiency accelerates non-alcoholic steatohepatitis through regulating lipophagy and fatty acid oxidation via Sirt1/AMPK pathway. Free Radic Biol Med. 2024;220:78-91. [25] ZHANG T, LIU J, SHEN S, et al. SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity. Cell Death Differ. 2020; 27(1):329-344. [26] NGUYEN TTP, KIM DY, IM SS, et al. Impairment of ULK1 sulfhydration-mediated lipophagy by SREBF1/SREBP-1c in hepatic steatosis. Autophagy. 2021;17(12): 4489-4490. [27] MASUDA M, YOSHIDA-SHIMIZU R, MORI Y, et al. Sulforaphane induces lipophagy through the activation of AMPK-mTOR-ULK1 pathway signaling in adipocytes. J Nutr Biochem. 2022;106:109017 [28] LEE JM, WAGNER M, XIAO R, et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature. 2014;516(7529):112-115. [29] TU WJ, ZHANG YH, WANG XT, et al. Osteocalcin activates lipophagy via the ADPN-AMPK/PPARα-mTOR signaling pathway in chicken embryonic hepatocyte. Poult Sci. 2024;103(2):103293. [30] DUAN S, QIN N, PI J, et al. Antagonizing apolipoprotein J chaperone promotes proteasomaldegradation of mTOR and relieves hepatic lipid deposition. Hepatology. 2023;78(4):1182-1199. [31] 黄兰蔚,王瑞华,王宇,等. 补气消脂方调控 PI3K/AKT/mTOR 通路改善自噬减轻小鼠非酒精性脂肪肝机制研究[J]. 中国医院药学杂志,2025,45(3): 241-246. [32] WU J, GUAN F, HUANG H, et al. Tetrahydrocurcumin ameliorates hepatic steatosis by restoring hepatocytes lipophagy through mTORC1-TFEB pathway in nonalcoholic steatohepatitis. Biomed Pharmacother. 2024;178:117297. [33] GARCIA-MACIA M, SANTOS-LEDO A, LESLIE J, et al. A Mammalian Target of Rapamycin-Perilipin 3 (mTORC1-Plin3) Pathway is essential to Activate Lipophagy and Protects Against Hepatosteatosis. Hepatology. 2021;74(6):3441-3459. [34] LIU K, QIU D, LIANG X, et al. Lipotoxicity-induced STING1 activation stimulates MTORC1 and restricts hepatic lipophagy. Autophagy. 2022;18(4):860-876. [35] TAN A, PRASAD R, LEE C, et al. Past, present, and future perspectives of transcription factor EB (TFEB): mechanisms of regulation and association with disease. Cell Death Differ. 2022;29(8):1433-1449. [36] ZHANG H, LU J, LIU H, et al. Ajugol enhances TFEB-mediated lysosome biogenesis and lipophagy to alleviate non-alcoholic fatty liver disease. Pharmacol Res. 2021; 174:105964. [37] GUAN L, GUO L, ZHANG H, et al. Naringin Protects against Non-Alcoholic Fatty Liver Disease by Promoting Autophagic Flux and Lipophagy. Mol Nutr Food Res. 2024;68(3):e2200812. [38] ZHOU W, YAN X, ZHAI Y, et al. Phillygenin ameliorates nonalcoholic fatty liver disease via TFEB-mediated lysosome biogenesis and lipophagy. Phytomedicine. 2022;103:154235. [39] YOO J, JEONG IK, AHN KJ, et al. Fenofibrate, a PPARα agonist, reduces hepatic fat accumulation through the upregulation of TFEB-mediated lipophagy. Metabolism. 2021;120:154798. [40] SETTEMBRE C, DE CEGLI R, MANSUETO G, et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol. 2013;15(6):647-658. [41] ALCOBER-BOQUET L, ZANG T, PIETSCH L, et al. The PB1 and the ZZ domain of the autophagy receptor p62/SQSTM1 regulate the interaction of p62/SQSTM1 with the autophagosome protein LC3B. Protein Sci. 2024;33(1):e4840. [42] MINAMI Y, HOSHINO A, HIGUCHI Y, et al. Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion. Nat Commun. 2023;14(1):4084. [43] LONG M, LI X, LI L, et al. Multifunctional p62 Effects Underlie Diverse Metabolic Diseases. Trends Endocrinol Metab. 2017;28(11):818-830. [44] JUNG EJ, SUNG KW, BAE TH, et al. The N-degron pathway mediates lipophagy: The chemical modulation of lipophagy in obesity and NAFLD. Metabolism. 2023;146:155644. [45] FANG Y, JI L, ZHU C, et al. Liraglutide Alleviates Hepatic Steatosis by Activating the TFEB-Regulated Autophagy-Lysosomal Pathway. Front Cell Dev Biol. 2020;8: 602574. [46] ZHANG D, MA Y, LIU J, et al. Metformin Alleviates Hepatic Steatosis and Insulin Resistance in a Mouse Model of High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease by Promoting Transcription Factor EB-Dependent Autophagy. Front Pharmacol. 2021;12:689111. [47] FANG C, LIU S, YANG W, et al. Exercise ameliorates lipid droplet metabolism disorder by the PLIN2-LIPA axis-mediated lipophagy in mouse model of non-alcoholic fatty liver disease. Biochim Biophys Acta Mol Basis Dis. 2024; 1870(3):167045. [48] ZHANG G, HAN J, WANG L, et al. The vesicular transporter TX11 governs ATGL-Smediated hepatic lipolysis and lipophagy. iScience. 2022;25(4):104085. [49] SATHYANARAYAN A, MASHEK MT, MASHEK DG. ATGL Promotes Autophagy /Lipophagy via SIRT1 to Control Hepatic Lipid Droplet Catabolism. Cell Rep. 2017; 19(1):1-9. [50] CHEN S, LU Z, JIA H, et al. Hepatocyte-specific Mas activation enhances lipophagy and fatty acid oxidation to protect against acetaminophen-induced hepatotoxicity in mice. J Hepatol. 2023;78(3):543-557. [51] SU P, CHEN JG, TANG DH. Exercise against nonalcoholic fatty liver disease: Possible role and mechanism of lipophagy. Life Sci. 2023;327:121837. [52] JIAN Y, YUAN S, YANG J, et al. Aerobic Exercise Alleviates Abnormal Autophagy in Brain Cells of APP/PS1 Mice by Upregulating AdipoR1 Levels. Int J Mol Sci. 2022;23(17):9921. [53] GUNADI JW, TARAWAN VM, DANIEL RAY HR, et al. Different training intensities induced autophagy and histopathology appearances potentially associated with lipid metabolism in wistar rat liver. Heliyon. 2020;6(5):e03874. [54] BYRNES K, BLESSINGER S, BAILEY NT, et al. Therapeutic regulation of autophagy in hepatic metabolism. Acta Pharm Sin B. 2022;12(1):33-49. [55] HUANG J, WANG X, ZHU Y, et al. Exercise activates lysosomal function in the brain through AMPK-SIRT1-TFEB pathway. CNS Neurosci Ther. 2019;25(6):796-807. [56] LI R, LI G, HAI Y, et al. The effect of aerobic exercise on the lipophagy of adipose tissue in obese male mice. Chem Phys Lipids. 2022;247:105225. [57] 李梦影,李灵杰,马春伟,等. 不同低氧训练模式通过激活小鼠脂肪组织脂噬作用调节脂代谢[J]. 中国运动医学杂志,2022,41(11):866-874. [58] 运动处方中国专家共识(2023)[J]. 中国运动医学杂志,2023,42(1):3-13. [59] THERDYOTHIN A, PHIPHOPTHATSANEE N, ISANEJAD M. The Effect of Omega-3 Fatty Acids on Sarcopenia: Mechanism of Action and Potential Efficacy. Mar Drugs. 2023;13;21(7):399. [60] TAMARGO-GÓMEZ I, FERNÁNDEZ-SANJURJO M, CODINA-MARTÍNEZ H, et al. Autophagy Alterations in White and Brown Adipose Tissues of Mice Exercised under Different Training Protocols. Front Biosci (Landmark Ed). 2024;29(10):348. [61] SHAHANDEH F, FATHI R,NASIRI K. Spirulina supplement and exercise training affect lipid droplets-related genes expression in visceral adipose tissue.Avicenna J Phytomed. 2024;14(1):100-111. [62] BITTEL AJ, BITTEL DC, MITTENDORFER B, et al. A single bout of resistance exercise improves postprandial lipid metabolism in overweight/obese men with prediabetes. Diabetologia. 2020;63(3):611-623. [63] 冯燕. 抗阻运动对高脂饮食诱导的肥胖大鼠脂肪组织自噬和炎症因子的影响[J]. 基因组学与应用生物学,2020,39(2):867-873. [64] GOTO K, ISHII N, SUGIHARA S, et al. Effects of resistance exercise on lipolysis during subsequent submaximal exercise. Med Sci Sports Exerc. 2007;39(2):308-315. [65] LI Y, LEE S, LANGLEITE T, et al. Subsarcolemmal lipid droplet responses to a combined endurance and strength exercise intervention. Physiol Rep. 2014; 2(11):e12187. [66] DUFT RG, BONFANTE ILP, PALMA-DURAN SA, et al. Moderate-intensity Combined Training Induces Lipidomic Changes in Individuals With Obesity and Type 2 Diabetes. J Clin Endocrinol Metab. 2024;109(9):2182-2198. [67] MOHAMMAD RAHIMI GR, ATTARZADEH HOSSEINI SR. Effect of Aerobic Exercise Alone or in Conjunction With Diet on Liver Function, Insulin Resistance and Lipids in Non-Alcoholic Fatty Liver Disease. Biol Res Nurs. 2022;24(2):259-276. [68] BARI MA, MAHMOODALOBAIDI MA, ANSARI HA, et al. Effects of an aerobic training program on liver functions in male athletes: a randomized controlled trial. Sci Rep. 2023;13(1):9427. [69] 王鹏,刘宝亮,刘岩,等. 运动结合饮食干预对肥胖非酒精性脂肪肝女大学生身体成分和脂代谢及肠道菌群的影响[J]. 中国学校卫生,2023,44(8):1169-1173. [70] BAI Y, LI T, LIU J, et al. Aerobic exercise and vitamin E improve high-fat diet-induced NAFLD in rats by regulating the AMPK pathway and oxidative stress. Eur J Nutr. 2023;62(6):2621-2632. [71] 胡戈, 秦菲, 曹建民,等. 姜黄素复合有氧运动对非酒精性脂肪肝大鼠肝功能的改善作用[J/OL]. 食品科学, https://link.cnki.net/urlid/11.2206.ts.20240821.1403.03. [72] 马佳敏,高璐璐,张梦伟,等. 枸杞多糖联合有氧运动对非酒精性脂肪肝炎大鼠模型的改善作用及其机制研究[J]. 临床肝胆病杂志,2021,37(6):1348-1353. [73] JAFARIKHAH R, DAMIRCHI A, RAHMANI NIA F, et al. Effect of functional resistance training on the structure and function of the heart and liver in patients with non-alcoholic fatty liver. Sci Rep. 2023;13(1):15475. [74] 李军汉,高德润,江玲玲,等. 有氧和抗阻运动对糖尿病脂肪肝大鼠肝脏内质网应激的影响[J]. 中国康复医学杂志,2021,36(1):23-31. [75] 付洋洋,孟美美,荣宁,等. 有氧运动与抗阻运动对非酒精性脂肪肝患者影响效果研究[J]. 南京医科大学学报(自然科学版),2018,38(4):528-531. [76] ZELBER-SAGI S, BUCH A, YESHUA H, et al. Effect of resistance training on non-alcoholic fatty-liver disease a randomized-clinical trial. World J Gastroenterol. 2014; 20: 4382. [77] XUE Y, PENG Y, ZHANG L, et al. Effect of different exercise modalities on nonalcoholic fatty liver disease: a systematic review and network meta-analysis. Sci Rep. 2024;14(1): 6212. [78] SHOJAEE-MORADIE F, CUTHBERTSON DJ, BARRETT M, et al. Exercise Training Reduces Liver Fat and Increases Rates of VLDL Clearance But Not VLDL Production in NAFLD. J Clin Endocrinol Metab. 2016;101(11):4219-4228. [79] HUANG W, RUAN W, HUO C, et al. The effect of 12 weeks of combined training on hepatic fat content and metabolic flexibility of individuals with non-alcoholic fatty liver disease: Protocol of an open-label, single-center randomized control trial. Front Nutr. 2023;9:1065188. [80] NIKROO H, HOSSEINI SRA, FATHI M, et al. The effect of aerobic, resistance, and combined training on PPAR-α, SIRT1 gene expression, and insulin resistance in high-fat diet-induced NAFLD male rats. Physiol Behav. 2020;227:113149. [81] ZOU Y, CHEN Z, SUN C, et al. Exercise Intervention Mitigates Pathological Liver Changes in NAFLD Zebrafish by Activating SIRT1/AMPK/NRF2 Signaling. Int J Mol Sci. 2021;10;22(20):10940. [82] GAO Y, ZHANG W, ZENG LQ, et al. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol. 2020;36:101635. [83] 赵永军,胡海光,王晶,等. 抗阻、耐力运动对肥胖小鼠肝脏自噬相关蛋白表达的影响[J]. 扬州大学学报(农业与生命科学版),2023,44(6):126-133. [84] DAMASCENO DE LIMA R, FUDOLI LINS VIEIRA R, ROSETTO MUÑOZ V, et al. Time-restricted feeding combined with resistance exercise prevents obesity and improves lipid metabolism in the liver of mice fed a high-fat diet. Am J Physiol Endocrinol Metab. 2023;325(5):E513-E528. [85] PI H, LIU M, XI Y, et al. Long-term exercise prevents hepatic steatosis: a novel role of FABP 1 in regulation of autophagy-lysosomal machinery. FASEB J. 2019; 33(11):11870-11883. [86] WU W, JIAN Y, YUAN S, et al. Exercise-promoted adiponectin secretion activates autolysosomes to protect the liver of ApoE(-/-) mice from a high-fat diet. Food Funct. 2024;15(19):9796-9812. [87] CAO W, WANG K, LIANG C, et al. Dietary tea seed saponin combined with aerobic exercise attenuated lipid metabolism and oxidative stress in mice fed a high-fat diet (HFD). J Food Biochem. 2022;46(12):e14461. [88] HORN P, TACKE F. Metabolic reprogramming in liver fibrosis. Cell Metab. 2024; 36(7):1439-1455. [89] LI X, YANG Y, SUN Y, et al. Research Progress on Lipophagy-Mediated Exercise Intervention in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci. 2024;9;25(6):3153. [90] WANG B, ZENG J, GU Q. Exercise restores bioavailability of hydrogen sulfide and promotes autophagy influx in livers of mice fed with high-fat diet. Can J Physiol Pharmacol. 2017;95(6):667-674. [91] DINIZ TA, DE LIMA JUNIOR EA, TEIXEIRA AA, et al. Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice. Life Sci. 2021;266:118868. [92] YANG Y, LI X, LIU Z, et al. Moderate Treadmill Exercise Alleviates NAFLD by Regulating the Biogenesis and Autophagy of Lipid Droplet. Nutrients. 2022; 14(22):4910. [93] MARDARE C, KRÜGER K, LIEBISCH G, et al. Endurance and Resistance Training Affect High Fat Diet-Induced Increase of Ceramides, Inflammasome Expression, and Systemic Inflammation in Mice. J Food Biochem. 2015;2016:4536470. [94] GRANDER C, GRABHERR F, TILG H. Non-alcoholic fatty liver disease: pathophysiological concepts and treatment options. Cardiovasc Res. 2023;119(9):1787-1798. [95] CANG X, WANG Y, ZENG J, et al. C9orf72 knockdown alleviates hepatic insulin resistance by promoting lipophagy. Biochem Biophys Res Commun. 2022;588:15-22. [96] ANGULO J, EL ASSAR M, ÁLVAREZ-BUSTOS A, et al. Physical activity and exercise: Strategies to manage frailty. Redox Biol. 2020;35:101513. [97] LI H, DUN Y, ZHANG W, et al. Exercise improves lipid droplet metabolism disorder through activation of AMPK-mediated lipophagy in NAFLD. Life Sci. 2021;273: 119314. [98] SUDER A, MAKIEL K, TARGOSZ A, et al. Effects of exercise and dietary interventions on asprosin, leptin, and lipid metabolism in males with abdominal obesity, a randomized controlled trial. Sci Rep. 2024;14(1):28109. |
[1] | 赖鹏宇, 梁 冉, 沈 山. 组织工程技术修复颞下颌关节:问题与挑战[J]. 中国组织工程研究, 2025, 29(在线): 1-9. |
[2] | 张艺博, 卢健棋, 毛美玲, 庞 延, 董 礼, 杨尚冰, 肖 湘. 类风湿关节炎与冠状动脉粥样硬化的因果关系:GWAS数据库血清代谢物和炎症因子数据[J]. 中国组织工程研究, 2025, 29(在线): 1-9. |
[3] | 韩海慧, 冉 磊, 孟晓辉, 辛鹏飞, 向 峥, 边艳琴, 施 杞, 肖涟波. 靶向成纤维细胞生长因子受体1信号改善类风湿关节炎的骨破坏[J]. 中国组织工程研究, 2025, 29(9): 1905-1912. |
[4] | 余 帅, 刘家伟, 朱 彬, 潘 檀, 李兴龙, 孙广峰, 于海洋, 丁 亚, 王宏亮. 小分子药物治疗骨关节炎的热点问题及应用前景[J]. 中国组织工程研究, 2025, 29(9): 1913-1922. |
[5] | 陈 帅, 金 杰, 韩化伟, 田宁晟, 李志伟. 两样本孟德尔随机化分析循环炎症细胞因子与骨密度的因果关联[J]. 中国组织工程研究, 2025, 29(8): 1556-1564. |
[6] | 于经邦, 吴亚云. 非编码RNA在肺纤维化过程中的调控作用[J]. 中国组织工程研究, 2025, 29(8): 1659-1666. |
[7] | 王秋月, 靳 攀, 蒲 锐. 运动干预与细胞焦亡在骨关节炎中的作用[J]. 中国组织工程研究, 2025, 29(8): 1667-1675. |
[8] | 袁维勃, 刘 婵, 余丽梅. 肝脏类器官在肝脏疾病模型与移植治疗中的应用潜力[J]. 中国组织工程研究, 2025, 29(8): 1684-1692. |
[9] | 赵楠楠, 李彦杰, 秦合伟, 朱博超, 丁慧敏, 徐振华. 通脉开窍丸治疗血管性痴呆模型大鼠海马区神经元的铁死亡变化[J]. 中国组织工程研究, 2025, 29(7): 1401-1407. |
[10] | 德 吉, 索朗达, 魏宇辰, 王 斌, 阿旺措吉, 仁青措姆, 崔久增, 张 磊, 巴 贵. 藏西北绒山羊子宫内膜容受性相关基因和可变剪接事件的综合分析[J]. 中国组织工程研究, 2025, 29(7): 1429-1436. |
[11] | 彭洪成, 彭国璇, 雷安毅, 林 圆, 孙 红, 宁 旭, 尚显文, 邓 进, 黄明智. 血小板衍生生长因子BB参与生长板损伤修复的作用与机制[J]. 中国组织工程研究, 2025, 29(7): 1497-1503. |
[12] | 迟文鑫, 张存鑫, 高 凯, 吕超亮, 张科峰. 川陈皮素抑制BV2小胶质细胞炎症反应的机制[J]. 中国组织工程研究, 2025, 29(7): 1321-1327. |
[13] | 喻 婷, 吕冬梅, 邓 浩, 孙 涛, 程 钎. 淫羊藿苷预处理增强人牙周膜干细胞对M1型巨噬细胞的影响[J]. 中国组织工程研究, 2025, 29(7): 1328-1335. |
[14] | 杨治航, 孙祖延, 黄文良, 万 喻, 陈仕达, 邓 江. 神经生长因子促进兔骨髓间充质干细胞软骨分化并抑制肥大分化[J]. 中国组织工程研究, 2025, 29(7): 1336-1342. |
[15] | 刘哲哲, 于梅青, 王婷婷, 张 敏, 李百艳. 曲克芦丁调控核因子κB信号通路抑制脑梗死模型大鼠脑损伤及神经元凋亡[J]. 中国组织工程研究, 2025, 29(6): 1137-1143. |
1.1.6 检索策略 PubMed、Web of Science和中国知网数据库检索策略见表1。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||