中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (35): 7601-7610.doi: 10.12307/2025.988
• 组织构建综述 tissue construction review • 上一篇 下一篇
张艺璇,李东娜,刘春艳
收稿日期:
2024-11-11
接受日期:
2024-12-31
出版日期:
2025-12-18
发布日期:
2025-05-07
通讯作者:
刘春艳,博士,主任医师,教授,河北医科大学口腔医(学)院正畸科,河北省口腔医学重点实验室,河北省口腔健康技术创新中心,河北省石家庄市 050017
作者简介:
张艺璇,女,2000年生,福建省宁化县人,汉族,河北医科大学在读硕士,主要从事牙周组织再生方面的研究。
基金资助:
Zhang Yixuan, Li Dongna, Liu Chunyan
Received:
2024-11-11
Accepted:
2024-12-31
Online:
2025-12-18
Published:
2025-05-07
Contact:
Liu Chunyan, MD, Chief physician, Professor, Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University; Hebei Key Laboratory of Stomatology; Hebei Oral Health Technology Innovation Center, Shijiazhuang 050017, Hebei Province, China
About author:
Zhang Yixuan, Master candidate, Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University; Hebei Key Laboratory of Stomatology; Hebei Oral Health Technology Innovation Center, Shijiazhuang 050017, Hebei Province, China
Supported by:
摘要:
文题释义:
组学分析:是一种综合性的生物学研究方法,通过对生物体内不同层次的生物分子进行系统性分析,以揭示生物系统的复杂性和动态变化。组学技术涵盖多个领域,主要包括基因组学、转录组学、蛋白质组学、代谢组学等,通过结合上述各类组学数据,能够提供对生物体在健康和疾病状态下的全面理解。
牙周炎:是一种常见的慢性炎症性疾病,主要影响牙齿周围的支持组织,包括牙龈、牙槽骨和牙周韧带,牙周炎发病通常与牙菌斑的积累密切相关。牙周炎不仅会影响口腔健康,还与全身多种疾病存在相关性,如心血管疾病、糖尿病等。因此,早期诊断和有效治疗对于预防牙周炎的进展和相关并发症至关重要。
背景:近年来,随着组学技术的迅猛发展,口腔医学研究迈入了一个崭新的阶段。组学技术的广泛应用不仅能系统地揭示生物体内的复杂性和动态变化,还为包括牙周炎在内的多种疾病的研究提供了更全面的视角。
目的:综述组学技术在牙周炎研究中的应用进展,并探讨了当前存在的问题,旨在为牙周炎预防和治疗及在临床其他领域的应用拓展思路。
方法:检索PubMed数据库、中国知网1993年6月至2024年8月收录的相关文献。英文检索词为“omics,periodontitis,transcriptomics and periodontitis,proteomics and periodontitis,genomics and periodontitis,metabolomics and periodontitis,multi-omics and periodontitis”,中文检索词为“组学,牙周炎,转录组学和牙周炎,蛋白质组学和牙周炎,基因组学和牙周炎,代谢组学和牙周炎,多组学联合分析和牙周炎”,最终纳入72篇文献进行归纳总结。
结果与结论:①通过基因组学、转录组学、蛋白质组学和代谢组学等技术,研究人员能够从多维度深入分析牙周炎的病理过程、炎症反应及相关生物标志物;②近年来的研究表明,组学技术可以识别与牙周炎相关的关键基因和代谢物等,促进对疾病的精准理解与干预。随着技术的不断进步,组学分析在牙周炎的研究中将更加广泛应用,推动更有效的预防和治疗策略的发展,从而提高患者的生活质量。
https://orcid.org/0009-0008-8696-7170(张艺璇)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
张艺璇, 李东娜, 刘春艳. 牙周炎的病理过程、炎症反应及相关生物标志物:多组学分析[J]. 中国组织工程研究, 2025, 29(35): 7601-7610.
Zhang Yixuan, Li Dongna, Liu Chunyan. Pathological processes, inflammatory responses, and related biomarkers of periodontitis: a multi-omics analysis[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7601-7610.
[1] DARVEAU RP, TANNER A, PAGE RC. The microbial challenge in periodontitis. Periodontol 2000. 1997;14:12-32. [2] KINANE DF. Causation and pathogenesis of periodontal disease. Periodontol 2000. 2001;25:8-20. [3] SCHWARTZ Z, GOULTSCHIN J, DEAN DD, et al. Mechanisms of alveolar bone destruction in periodontitis. Periodontol 2000. 1997;14:158-172. [4] NARAD P, KIRTHANASHRI SV. Introduction to Omics//ARIVARADARAJAN P, MISRA G. Omics Approaches, Technologies And Applications: Integrative Approaches For Understanding OMICS Data. Singapore: Springer, 2018: 1-10. [5] JUN L, YUANYUAN L, ZHIQIANG W, et al. Multi-omics study of key genes, metabolites, and pathways of periodontitis. Arch Oral Biol. 2023;153:105720. [6] CHAN HH, RAHIM ZHA, JESSIE K, et al. Salivary proteins associated with periodontitis in patients with Type 2 diabetes mellitus. Int J Mol Sci. 2012;13(4):4642-4654. [7] JI J, LI X, ZHU Y, et al. Screening of periodontitis-related diagnostic biomarkers based on weighted gene correlation network analysis and machine algorithms. Technol Health Care. 2022;30(5):1209-1221. [8] ZHANG Q, JIAO Y, MA N, et al. Identification of Endoplasmic Reticulum Stress-Related Biomarkers of Periodontitis Based on Machine Learning: A Bioinformatics Analysis. Dis Markers. 2022;2022:8611755. [9] XU X, LI T, TANG J, et al. CXCR4-mediated neutrophil dynamics in periodontitis. Cell Signal. 2024;120:111212. [10] CAETANO AJ, D’AGOSTINO EM, SHARPE P, et al. Expression of periodontitis susceptibility genes in human gingiva using single-cell RNA sequencing. J Periodontal Res. 2022;57(6):1210-1218. [11] AGRAFIOTI P, MORIN-BAXTER J, TANAGALA KKK, et al. Decoding the role of macrophages in periodontitis and type 2 diabetes using single-cell RNA-sequencing. FASEB J. 2022;36(2):e22136. [12] SHEN Z, ZHANG R, HUANG Y, et al. The spatial transcriptomic landscape of human gingiva in health and periodontitis. Sci China Life Sci. 2024; 67(4):720-732. [13] QIU Y, TAN X, LEI Z, et al. A GntR family transcription factor in Porphyromonas gingivalis regulates bacterial growth, acylpeptidyl oligopeptidase, and gingipains activity. Mol Oral Microbiol. 2023; 38(1):48-57. [14] NEMOTO T, SHIBA T, KOMATSU K, et al. Discrimination of Bacterial Community Structures among Healthy, Gingivitis, and Periodontitis Statuses through Integrated Metatranscriptomic and Network Analyses. mSystems. 2021;6(6):e0088621. [15] KIN LX, BUTLER CA, SLAKESKI N, et al. Metabolic cooperativity between Porphyromonas gingivalis and Treponema denticola. J Oral Microbiol. 2020;12(1):1808750. [16] TAN KH, SEERS CA, DASHPER SG, et al. Porphyromonas gingivalis and Treponema denticola exhibit metabolic symbioses. PLoS Pathog. 2014; 10(3):e1003955. [17] ZHANG J, SUN L, WITHANAGE MHH, et al. TRAF3IP2-IL-17 Axis Strengthens the Gingival Defense against Pathogens. J Dent Res. 2023; 102(1):103-115. [18] SONG B, XIAN W, SUN Y, et al. Akkermansia muciniphila inhibited the periodontitis caused by Fusobacterium nucleatum. NPJ Biofilms Microbiomes. 2023;9(1):49. [19] LOPEZ-OLIVA I, MALCOLM J, CULSHAW S. Periodontitis and rheumatoid arthritis-Global efforts to untangle two complex diseases. Periodontol 2000. 2024. doi: 10.1111/prd.12530. [20] LI W, PENG J, SHANG Q, et al. Periodontitis and the risk of all-cause and cause-specific mortality among US adults with diabetes: A population-based cohort study. J Clin Periodontol. 2024;51(3):288-298. [21] LI X, KIPROWSKA M, KANSARA T, et al. Neuroinflammation: A Distal Consequence of Periodontitis. J Dent Res. 2022;101(12):1441-1449. [22] WU E, CHENG M, ZHANG X, et al. Exploration of potential shared gene signatures between periodontitis and multiple sclerosis. BMC Oral Health. 2024;24(1):75. [23] GAO X, GUO Z, WANG P, et al. Transcriptomic analysis reveals the potential crosstalk genes and immune relationship between IgA nephropathy and periodontitis. Front Immunol. 2023;14:1062590. [24] XIONG Z, FANG Y, LU S, et al. Identification and Validation of Signature Genes and Potential Therapy Targets of Inflammatory Bowel Disease and Periodontitis. J Inflamm Res. 2023;16:4317-4330. [25] GÖRG A, WEISS W, DUNN MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004;4(12):3665-3685. [26] WILKINS MR, SANCHEZ JC, GOOLEY AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996;13:19-50. [27] NONAKA T, WONG DTW. Saliva Diagnostics. Annu Rev Anal Chem (Palo Alto Calif). 2022;15(1):107-121. [28] BELLEI E, BERTOLDI C, MONARI E, et al. Proteomics Disclose the Potential of Gingival Crevicular Fluid (GCF) as a Source of Biomarkers for Severe Periodontitis. Materials (Basel). 2022;15(6):2161. [29] BLANCO-PINTOS T, REGUEIRA-IGLESIAS A, SEIJO-PORTO I, et al. Accuracy of periodontitis diagnosis obtained using multiple molecular biomarkers in oral fluids: A systematic review and meta-analysis. J Clin Periodontol. 2023;50(11):1420-1443. [30] YUAN C, MA Z, TONG P, et al. Peptidomic changes of saliva after non-surgical treatment of stage I/II generalized periodontitis. Oral Dis. 2022;28(6):1640-1651. [31] BALCI N, KURGAN Ş, ÇEKICI A, et al. Free amino acid composition of saliva in patients with healthy periodontium and periodontitis. Clin Oral Investig. 2021;25(6):4175-4183. [32] ŞENGÜL V, GÜNEY Z, KURGAN Ş, et al. Evaluation of salivary and serum methylated arginine metabolites and nitric oxide synthase in advanced periodontitis patients. Clin Oral Investig. 2022;26(7):5061-5070. [33] SHIN MS, KIM YG, SHIN YJ, et al. Deep sequencing salivary proteins for periodontitis using proteomics. Clin Oral Investig. 2019;23(9):3571-3580. [34] ZHAO Z, SUN X, CAO L, et al. Salivary Proteome and Intact N-Glycopeptides Analysis Reveal Specific Signatures in Periodontitis. J Proteome Res. 2024;23(1):25-39. [35] QIU C, ZHOU W, SHEN H, et al. Profiles of subgingival microbiomes and gingival crevicular metabolic signatures in patients with amnestic mild cognitive impairment and Alzheimer’s disease. Alzheimers Res Ther. 2024;16(1):41. [36] PEI F, WANG M, WANG Y, et al. Quantitative proteomic analysis of gingival crevicular fluids to identify novel biomarkers of gingival recession in orthodontic patients. J Proteomics. 2022;266:104647. [37] VERNEROVÁ A, KRČMOVÁ LK, HENEBERK O, et al. Liquid chromatography method with tandem mass spectrometry and fluorescence detection for determination of inflammatory biomarkers in gingival crevicular fluid as a tool for diagnosis of periodontal disease. J Pharm Biomed Anal. 2022;212:114644.
[38] TORRES A, MICHEA MA, VÉGVÁRI Á, et al. A multi-platform analysis of human gingival crevicular fluid reveals ferroptosis as a relevant regulated cell death mechanism during the clinical progression of periodontitis. Int J Oral Sci. 2024;16(1):43. [39] PEI J, LI F, XIE Y, et al. Microbial and metabolomic analysis of gingival crevicular fluid in general chronic periodontitis patients: lessons for a predictive, preventive, and personalized medical approach. EPMA J. 2020;11(2):197-215. [40] HIETER P, BOGUSKI M. Functional genomics: it’s all how you read it. Science. 1997;278(5338):601-602. [41] OUDELAAR AM, HIGGS DR. The relationship between genome structure and function. Nat Rev Genet. 2021;22(3):154-168. [42] NEW FN, BRITO IL. What Is Metagenomics Teaching Us, and What Is Missed? Annu Rev Microbiol. 2020;74:117-135. [43] RINKE C, SCHWIENTEK P, SCZYRBA A, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499(7459): 431-437. [44] 林仁杰,戴安娜,汪淑华,等.糖尿病影响牙周炎患者口腔龈下菌群和唾液菌群组成的研究进展[J].口腔医学,2024,44(6):458-461+ 474. [45] FARINA R, SEVERI M, CARRIERI A, et al. Whole metagenomic shotgun sequencing of the subgingival microbiome of diabetics and non-diabetics with different periodontal conditions. Arch Oral Biol. 2019; 104:13-23. [46] ZHANG S, YU N, ARCE RM. Periodontal inflammation: Integrating genes and dysbiosis. Periodontol 2000. 2020;82(1):129-142. [47] ABUSLEME L, HOARE A, HONG BY, et al. Microbial signatures of health, gingivitis, and periodontitis. Periodontol 2000. 2021;86(1):57-78. [48] VAITHILINGAM RD, SAFII SH, BAHARUDDIN NA, et al. Moving into a new era of periodontal genetic studies: relevance of large case-control samples using severe phenotypes for genome-wide association studies. J Periodontal Res. 2014;49(6):683-695. [49] MUNZ M, WILLENBORG C, RICHTER GM, et al. A genome-wide association study identifies nucleotide variants at SIGLEC5 and DEFA1A3 as risk loci for periodontitis. Hum Mol Genet. 2017;26(13):2577-2588. [50] NOLDE M, ALAYASH Z, RECKELKAMM SL, et al. Downregulation of interleukin 6 signaling might reduce the risk of periodontitis: a drug target Mendelian randomization study. Front Immunol. 2023;14: 1160148. [51] YE X, BAI Y, LI M, et al. Genetic associations between circulating immune cells and periodontitis highlight the prospect of systemic immunoregulation in periodontal care. Elife. 2024;12:RP92895. [52] NICHOLSON JK, LINDON JC, HOLMES E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181-1189. [53] MIKKONEN JJ, SINGH SP, HERRALA M, et al. Salivary metabolomics in the diagnosis of oral cancer and periodontal diseases. J Periodontal Res. 2016;51(4):431-437. [54] BAIMA G, CORANA M, IADEROSA G, et al. Metabolomics of gingival crevicular fluid to identify biomarkers for periodontitis: A systematic review with meta-analysis. J Periodontal Res. 2021;56(4):633-645. [55] YUAN G, CHEN J, WANG X, et al. Serum metabolomics provides clues in understanding colitis exacerbating experimental periodontitis in female mice. Arch Oral Biol. 2023;145:105583. [56] BRÄGGER I. Radiographic diagnosis of periodontal disease progression. Curr Opin Periodontol. 1996;3:59-67. [57] WILLIAMS RC, HOWELL TH. New technologies for the diagnosis of periodontal disease. J Prosthet Dent. 1993;69(6):551-557. [58] BARNES VM, CIANCIO SG, SHIBLY O, et al. Metabolomics reveals elevated macromolecular degradation in periodontal disease. J Dent Res. 2011;90(11):1293-1297. [59] KIM S, KIM HJ, SONG Y, et al. Metabolic phenotyping of saliva to identify possible biomarkers of periodontitis using proton nuclear magnetic resonance. J Clin Periodontol. 2021;48(9):1240-1249. [60] ROMANO F, MEONI G, MANAVELLA V, et al. Analysis of salivary phenotypes of generalized aggressive and chronic periodontitis through nuclear magnetic resonance-based metabolomics. J Periodontol. 2018;89(12):1452-1460. [61] DONG Z, LV W, ZHANG C, et al. Correlation Analysis of Gut Microbiota and Serum Metabolome With Porphyromonas gingivalis-Induced Metabolic Disorders. Front Cell Infect Microbiol. 2022;12:858902. [62] CHEN HW, ZHOU W, LIAO Y, et al. Analysis of metabolic profiles of generalized aggressive periodontitis. J Periodontal Res. 2018;53(5): 894-901. [63] 陈娇,杜悦,周学东,等.牙周病患者唾液代谢轮廓分析[J].四川大学学报(医学版),2022,53(5):842-850. [64] CHEN ZY, XU TT, LIANG ZJ, et al. Untargeted and targeted gingival metabolome in rodents reveal metabolic links between high-fat diet-induced obesity and periodontitis. J Clin Periodontol. 2021;48(8):1137-1148. [65] KUBONIWA M, SAKANAKA A, HASHINO E, et al. Prediction of Periodontal Inflammation via Metabolic Profiling of Saliva. J Dent Res. 2016;95(12):1381-1386. [66] DEDE FÖ, OZDEN FO, AVCI B. 8-hydroxy-deoxyguanosine levels in gingival crevicular fluid and saliva in patients with chronic periodontitis after initial periodontal treatment. J Periodontol. 2013;84(6):821-828. [67] LIANG H, LUO H, SANG Z, et al. GREMI: An Explainable Multi-Omics Integration Framework for Enhanced Disease Prediction and Module Identification. IEEE J Biomed Health Inform. 2024;28(11):6983-6996. [68] DING J, LI J, ZHANG C, et al. High-Throughput Combined Analysis of Saliva Microbiota and Metabolomic Profile in Chinese Periodontitis Patients: A Pilot Study. Inflammation. 2024;47(3):874-890. [69] CHENG T, WEN P, YU R, et al. Integrative microbiome and metabolome profiles reveal the impacts of periodontitis via oral-gut axis in first-trimester pregnant women. J Transl Med. 2024;22(1):819. [70] HUANG Z, PENG S, CEN T, et al. Association between biological ageing and periodontitis: Evidence from a cross-sectional survey and multi-omics Mendelian randomization analysis. J Clin Periodontol. 2024;51(10):1369-1383. [71] LAFLEUR S, BODEIN A, MBUYA MALAÏKA MUTOMBO J, et al. Multi-Omics Data Integration Reveals Key Variables Contributing to Subgingival Microbiome Dysbiosis-Induced Inflammatory Response in a Hyperglycemic Microenvironment. Int J Mol Sci. 2023;24(10):8832. [72] SHOKEEN B, DINIS MDB, HAGHIGHI F, et al. Omics and interspecies interaction. Periodontol 2000. 2021;85(1):101-111. |
[1] | 刘 琳, 刘世轩, 陆馨悦, 王 侃. 慢性肌筋膜触发点模型大鼠的尿液代谢组学分析[J]. 中国组织工程研究, 2025, 29(8): 1585-1592. |
[2] | 白 静, 张 雪, 任 燕, 李月辉, 田晓宇. lncRNA-TNFRSF13C调控miR-1246对牙周细胞低氧诱导因子1α的作用[J]. 中国组织工程研究, 2025, 29(5): 928-935. |
[3] | 赵增波, 李晨曦, 窦晨雷, 马 娜, 周冠军. 壳聚糖/甘油磷酸钠/海藻酸钠/益母草碱水凝胶的抗炎与促成骨作用[J]. 中国组织工程研究, 2025, 29(4): 678-685. |
[4] | 王其飞, 杜兴彬, 孔健达. 中枢疲劳的神经生理基础及运动诱发机制[J]. 中国组织工程研究, 2025, 29(32): 6979-6988. |
[5] | 柴金莲, 孙铁锋, 李 威, 张博淳, 李广政, 周忠起, 梁学振, 王 平. 鹿角胶对激素性股骨头坏死模型大鼠的治疗作用:粪便代谢组学分析[J]. 中国组织工程研究, 2025, 29(29): 6187-6197. |
[6] | 刘昊为, 田浩冬, 黄 丽, 余杭林, 彭 莉. 血流限制抗阻运动对肥胖青年男性血清代谢物的急性影响[J]. 中国组织工程研究, 2025, 29(29): 6249-6259. |
[7] | 李泽铭, 张云涛, 王茂林, 侯玉东. 缺氧诱导因子1α调节骨稳态在口腔颌面部疾病治疗中的作用与机制[J]. 中国组织工程研究, 2025, 29(26): 5680-5687. |
[8] | 刘 源, 渠 源, 万雅坤, 郭婧宇, 姜 萍. 基底膜相关基因在类风湿关节炎不同中医证型中的转录组学分析及药物预测[J]. 中国组织工程研究, 2025, 29(25): 5486-5500. |
[9] | 王之枫, 杨 娇, 郗域江, 徐双凤, 施 婷, 蓝浚峯, 郝志慧, 和鹏芬, 杨爱明, 潘 攀, 王 健. 非靶向代谢组学分析影响轻中度脑卒中后认知功能障碍的生物标记物[J]. 中国组织工程研究, 2025, 29(24): 5116-5126. |
[10] | 高红丽, 秦玉凤, 张玥晗, 舒佳玉, 陈河林. 铜代谢与口腔疾病的诊断及治疗[J]. 中国组织工程研究, 2025, 29(20): 4316-4324. |
[11] | 梁 周, 张 驰, 潘成镇, 杨 博, 蒲张林, 刘 桦, 彭金辉, 文立春, 凌观汉, 陈 锋. 基于肠道菌群和广泛靶向代谢组学的山柰酚抗骨质疏松的作用机制[J]. 中国组织工程研究, 2025, 29(20): 4190-4204. |
[12] | 叶 丽, 田 川, 赵晓娟, 陈梦蝶, 叶倩倩, 李 强, 廖珠银, 李 晔, 朱向情, 阮光萍, 何志旭, 舒莉萍, 潘兴华. 高活性脐带间充质干细胞干预老年树鼩衰老脾脏的作用与机制[J]. 中国组织工程研究, 2025, 29(19): 4000-4010. |
[13] | 阮 珍, 寇久社. 转录组测序与定量蛋白质组学分析医用臭氧治疗兔骨骼肌损伤的分子机制[J]. 中国组织工程研究, 2025, 29(18): 3767-3774. |
[14] | 季明意, 季欣意, 徐俊峰. 褪黑素促进骨再生机制及在口腔种植中的应用[J]. 中国组织工程研究, 2025, 29(18): 3868-3876. |
[15] | 何 丽, 任 潞, 江小茜, 刘旭倩, 黎春晖, . 1,8-桉叶油素干预大鼠实验性牙周炎模型的炎症反应[J]. 中国组织工程研究, 2025, 29(17): 3605-3613. |
1.1.8 检索策略 以PubMed数据库检索策略为例,见图1。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||