[1] ROBERTO N, WANG C, MAITY S, et al. Engineered organoids for biomedical applications. Adv Drug Deliv Rev. 2023;203:115142.
[2] HENDRIKS D, PAGLIARO A, ANDREATTA F, et al. Human fetal brain self-organizes into long-term expanding organoids. Cell. 2024;187(3): 712-732.e38.
[3] FAIR SR, SCHWIND W, JULIAN DL, et al. Cerebral organoids containing an AUTS2 missense variant model microcephaly. Brain. 2023;146(1):387-404.
[4] CHAKRABARTY K, NAYAK D, DEBNATH J, et al. Retinal organoids in disease modeling and drug discovery: opportunities and challenges. Surv Ophthalmol. 2023. doi: 10.1016/j.survophthal.2023.09.003.
[5] VOGES HK, FOSTER SR, REYNOLDS L, et al. Vascular cells improve functionality of human cardiac organoids. Cell Rep. 2023;42(5):112322.
[6] AFONSO MB, MARQUES V, VAN MIL S, et al. Human liver organoids: from generation to applications. Hepatology. 2023. doi: 10.1097/HEP.0000000000000343.
[7] DILMEN E, ORHON I, JANSEN J, et al. Advancements in kidney organoids and tubuloids to study (dys)function. Trends Cell Biol. 2023. doi: 10.1016/j.tcb.2023.09.005.
[8] KU CC, WUPUTRA K, PAN JB, et al. Generation of human stomach cancer ipsc-derived organoids induced by helicobacter pylori infection and their application to gastric cancer research. Cells. 2022;11(2):184.
[9] KRAMER N, PRATSCHER B, MENESES A, et al. Generation of differentiating and long-living intestinal organoids reflecting the cellular diversity of canine intestine. Cells. 2020;9(4):822.
[10] 李彰杰,周晨阳,王晓林.血管化类器官芯片构建的研究进展[J].中华创伤杂志,2024,40(1):48-56.
[11] 马潇菁,洪子玹,朱舜天,等.血管化类器官的构建和研究进展[J].生理科学进展,2023,54(2):104-109.
[12] 孙珂,王婷,李静颐,等.血管化类器官的构建思路与技术挑战[J].中国比较医学杂志,2023,33(2):126-133.
[13] 孙谛,孙杨,汪振星,等.利用生物工程策略实现类器官血管化的研究进展[J].中华生物医学工程杂志,2023,29(4):437-445.
[14] STROBEL HA, MOSS SM, HOYING JB. Vascularized tissue organoids. Bioengineering (Basel). 2023;10(2):124.
[15] SHIRURE VS, HUGHES C, GEORGE SC. Engineering vascularized organoid-on-a-chip models. Annu Rev Biomed Eng. 2021;23:141-167.
[16] INAMORI M, MIZUMOTO H, KAJIWARA T. An approach for formation of vascularized liver tissue by endothelial cell-covered hepatocyte spheroid integration. Tissue Eng Part A. 2009;15(8):2029-2037.
[17] BAPTISTA PM, ORLANDO G, MIRMALEK-SANI SH, et al. Whole organ decellularization- a tool for bioscaffold fabrication and organ bioengineering. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009: 6526-6529.
[18] BAPTISTA PM, SIDDIQUI MM, LOZIER G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53(2):604-617.
[19] WIMMER RA, LEOPOLDI A, AICHINGER M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature. 2019; 565(7740):505-510.
[20] KUSUMA S, SHEN YI, HANJAYA-PUTRA D, et al. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci U S A. 2013;110(31):12601-12606.
[21] TAKEBE T, SEKINE K, ENOMURA M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013; 499(7459):481-484.
[22] MANSOUR AA, GONÇALVES JT, BLOYD CW, et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 2018;36(5):432-441.
[23] KONING M, DUMAS SJ, AVRAMUT MC, et al. Vasculogenesis in kidney organoids upon transplantation. NPJ Regen Med. 2022; 7(1):40.
[24] KIM JW, NAM SA, YI J, et al. Kidney decellularized extracellular matrix enhanced the vascularization and maturation of human kidney organoids. Adv Sci (Weinh). 2022;9(15):e2103526.
[25] LOW JH, LI P, CHEW E, et al. Generation of human psc-derived kidney organoids with patterned nephron segments and a de novo vascular network. Cell Stem Cell. 2019;25(3):373-387.e9.
[26] BAS-CRISTÓBAL MENÉNDEZ A, DU Z, VAN DEN BOSCH T, et al. Creating a kidney organoid-vasculature interaction model using a novel organ-on-chip system. Sci Rep. 2022;12(1):20699.
[27] LEWIS-ISRAELI YR, VOLMERT BD, GABALSKI MA, et al. Generating self-assembling human heart organoids derived from pluripotent stem cells. J Vis Exp. 2021. doi:10.3791/63097.
[28] LI A, SASAKI JI, ABE GL, et al. Vascularization of a bone organoid using dental pulp stem cells. Stem Cells Int. 2023;2023:5367887.
[29] KOBAYASHI S, COX AG, HARVEY KF, et al. Vasculature is getting Hip(po): Hippo signaling in vascular development and disease. Dev Cell. 2023; 58(23):2627-2640.
[30] BORASCH K, RICHARDSON K, PLENDL J. Cardiogenesis with a focus on vasculogenesis and angiogenesis. Anat Histol Embryol. 2020;49(5): 643-655.
[31] SHI Y, SUN L, WANG M, et al. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol. 2020; 18(5):e3000705.
[32] HEO DN, HOSPODIUK M, OZBOLAT IT. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Acta Biomater. 2019;95: 348-356.
[33] SHAH S, KANG KT. Two-cell spheroid angiogenesis assay system using both endothelial colony forming cells and mesenchymal stem cells. Biomol Ther (Seoul). 2018;26(5):474-480.
[34] LU X. Regulation of endogenous retroviruses in murine embryonic stem cells and early embryos. J Mol Cell Biol. 2024;15(8):mjad052.
[35] PHAM MT, POLLOCK KM, ROSE MD, et al. Generation of human vascularized brain organoids. Neuroreport. 2018;29(7):588-593.
[36] PITAKTONG I, LUI C, LOWENTHAL J, et al. Early vascular cells improve microvascularization within 3D cardiac spheroids. Tissue Eng Part C Methods. 2020;26(2):80-90.
[37] TAKASATO M, ER PX, CHIU HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526(7574):564-568.
[38] SUN XY, JU XC, LI Y, et al. Generation of vascularized brain organoids to study neurovascular interactions. Elife. 2022;11:e76707.
[39] LEWIS-ISRAELI YR, WASSERMAN AH, GABALSKI MA, et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat Commun. 2021; 12(1):5142.
[40] HOFBAUER P, JAHNEL SM, PAPAI N, et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell. 2021;184(12):3299-3317.e22.
[41] WANG Y, KESHAVARZ M, BARHOUSE P, et al. Strategies for regenerative vascular tissue engineering. Adv Biol (Weinh). 2023;7(5):e2200050.
[42] FAN Z, XU Z, NIU H, et al. Spatiotemporal delivery of basic fibroblast growth factor to directly and simultaneously attenuate cardiac fibrosis and promote cardiac tissue vascularization following myocardial infarction. J Control Release. 2019;311-312:233-244.
[43] YANAGISAWA H, YOKOYAMA U. Extracellular matrix-mediated remodeling and mechanotransduction in large vessels during development and disease. Cell Signal. 2021;86:110104.
[44] HEY S, LINDER S. Matrix metalloproteinases at a glance. J Cell Sci. 2024; 137(2):jcs261898.
[45] PRADO AF, BATISTA RIM, TANUS-SANTOS JE, et al. Matrix metalloproteinases and arterial hypertension:role of oxidative stress and nitric oxide in vascular functional and structural alterations. Biomolecules. 2021;11(4):585.
[46] ZHANG W, WAUTHIER E, LANZONI G, et al. Patch grafting of organoids of stem/progenitors into solid organs can correct genetic-based disease states. Biomaterials. 2022;288:121647.
[47] KOH GY. Orchestral actions of angiopoietin-1 in vascular regeneration. Trends Mol Med. 2013;19(1):31-39.
[48] CHEN Y, SHEN J, NILSSON AH, et al. Circulating hepatocyte growth factor reflects activation of vascular repair in response to stress. JACC Basic Transl Sci. 2022;7(8):747-762.
[49] REN LL, LI XJ, DUAN TT, et al. Transforming growth factor-β signaling: from tissue fibrosis to therapeutic opportunities. Chem Biol Interact. 2023;369:110289.
[50] NAKATSU MN, HUGHES CC. An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol. 2008;443: 65-82.
[51] PASSANITI A, KLEINMAN HK, MARTIN GR. Matrigel: History/background, uses, and future applications. J Cell Commun Signal. 2022;16(4): 621-626.
[52] KANUGULA AK, ADAPALA RK, GUARINO BD, et al. Studying angiogenesis using matrigel in vitro and in vivo. Methods Mol Biol. 2024;2711: 105-116.
[53] WERSCHLER N, PENNINGER J. Generation of human blood vessel organoids from pluripotent stem cells. J Vis Exp. 2023. doi:10.3791/64715.
[54] WENZ A, TJOENG I, SCHNEIDER I, et al. Improved vasculogenesis and bone matrix formation through coculture of endothelial cells and stem cells in tissue-specific methacryloyl gelatin-based hydrogels. Biotechnol Bioeng. 2018;115(10):2643-2653.
[55] TONG C, LI C, XIE B, et al. Generation of bioartificial hearts using decellularized scaffolds and mixed cells. Biomed Eng Online. 2019; 18(1):71.
[56] PARK KM, HUSSEIN KH, HONG SH, et al. Decellularized liver extracellular matrix as promising tools for transplantable bioengineered liver promotes hepatic lineage commitments of induced pluripotent stem cells. Tissue Eng Part A. 2016;22(5-6):449-460.
[57] LEUNING DG, WITJAS F, MAANAOUI M, et al. Vascular bioengineering of scaffolds derived from human discarded transplant kidneys using human pluripotent stem cell-derived endothelium. Am J Transplant. 2019;19(5):1328-1343.
[58] BAO M. Self-organization principles in stem-cell-derived synthetic embryo models. Innovation (Camb). 2023;4(1):100366.
[59] SASAI Y. Next-generation regenerative medicine:organogenesis from stem cells in 3D culture. Cell Stem Cell. 2013;12(5):520-530.
[60] EIRAKU M, WATANABE K, MATSUO-TAKASAKI M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 2008;3(5):519-532.
[61] NAKANO T, ANDO S, TAKATA N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):771-785.
[62] SERRA D, MAYR U, BONI A, et al. Self-organization and symmetry breaking in intestinal organoid development. Nature. 2019;569(7754): 66-72.
[63] ROBLEDO F, GONZÁLEZ-HODAR L, TAPIA P, et al. Spheroids derived from the stromal vascular fraction of adipose tissue self-organize in complex adipose organoids and secrete leptin. Stem Cell Res Ther. 2023;14(1):70.
[64] LAMONTAGNE E, MUOTRI AR, ENGLER AJ. Recent advancements and future requirements in vascularization of cortical organoids. Front Bioeng Biotechnol. 2022;10:1048731.
[65] LIPPMANN ES, AZARIN SM, KAY JE, et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012;30(8):783-791.
[66] HOLLOWAY EM, WU JH, CZERWINSKI M, et al. Differentiation of human intestinal organoids with endogenous vascular endothelial cells. Dev Cell. 2020;54(4):516-528.e7.
[67] HOYING JB, BOSWELL CA, WILLIAMS SK. Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cell Dev Biol Anim. 1996;32(7):409-419.
[68] STROBEL HA, GERTON T, HOYING JB. Vascularized adipocyte organoid model using isolated human microvessel fragments. Biofabrication. 2021. doi: 10.1088/1758-5090/abe187.
[69] VAN DEN BERG CW, RITSMA L, AVRAMUT MC, et al. Renal subcapsular transplantation of psc-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Reports. 2018;10(3):751-765.
[70] MURPHY AR, ALLENBY MC. In vitro microvascular engineering approaches and strategies for interstitial tissue integration. Acta Biomater. 2023;171:114-130.
[71] PAEK J, PARK SE, LU Q, et al. Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano. 2019;13(7):7627-7643.
[72] FENECH M, GIROD V, CLAVERIA V, et al. Microfluidic blood vasculature replicas using backside lithography. Lab Chip. 2019; 19(12):2096-2106.
[73] RAYNER SG, HOWARD CC, MANDRYCKY CJ, et al. Multiphoton-guided creation of complex organ-specific micro- vasculature. Adv Healthc Mater. 2021;10(10):e2100031.
[74] HOFFMANN L, BREITKREUTZ J, QUODBACH J. Fused deposition modeling (FDM) 3D printing of the thermo-sensitive peptidomimetic drug enalapril maleate. Pharmaceutics. 2022;14(11):2411.
[75] WHISLER JA, CHEN MB, KAMM RD. Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng Part C Methods. 2014;20(7):543-552.
[76] WANG X, PHAN DT, SOBRINO A, et al. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip. 2016;16(2):282-290.
[77] QUINTARD C, TUBBS E, JONSSON G, et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat Commun. 2024;15(1):1452. |