中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (11): 2357-2367.doi: 10.12307/2025.360
• 组织构建综述 tissue construction review • 上一篇 下一篇
郑善斌,夏天卫,孙家豪,陈志远,曹 逊,张 超,沈计荣
收稿日期:
2024-04-07
接受日期:
2024-05-25
出版日期:
2025-04-18
发布日期:
2024-08-12
通讯作者:
沈计荣,博士,主任中医师,南京中医药大学,南京中医药大学附属医院,南京中医药大学第一临床医学院,江苏省南京市 210000
作者简介:
郑善斌,男,2000年生,山东省泰安市人,汉族,南京中医药大学在读硕士,主要从事中医骨伤科相关研究。
基金资助:
Zheng Shanbin, Xia Tianwei, Sun Jiahao, Chen Zhiyuan, Cao Xun, Zhang Chao, Shen Jirong
Received:
2024-04-07
Accepted:
2024-05-25
Online:
2025-04-18
Published:
2024-08-12
Contact:
Shen Jirong, MD, Chief physician, Affiliated Hospital of Nanjing University of Chinese Medicine, First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
About author:
Zheng Shanbin, Master candidate, Affiliated Hospital of Nanjing University of Chinese Medicine, First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
Supported by:
摘要:
文题释义:
长链非编码RNA:是一种长度 > 200 nt的RNA,其不具有编码蛋白质的能力,但在细胞内发挥着重要的调控作用,参与人体多种病理与生理过程。
骨性关节炎:是一种伴随着衰老和损伤的慢性退行性病变。软骨和滑膜作为关节重要的结构在骨性关节炎的发展过程中不断发生病变,最终导致软骨损伤和滑膜炎症。
背景:骨性关节炎作为中老年常见疾病,发病机制尚不清晰。长链非编码RNA通过多种途径参与骨性关节炎发病过程,如调控翻译、促进或者抑制mRNA表达、吸附miRNA等。
目的:综述多种长链非编码RNA在骨性关节炎中的作用机制及研究进展。
方法:检索中国知网、万方数据库、维普数据库、PubMed、Web of Science和Sciencedirect数据库,以“osteoarthritis,degenerative joint disease,degenerative arthritis,OA,LncRNA,long non-coding RNA,long noncoding RNA,long intergenic non-coding RNA”为英文检索词,以“骨性关节炎,骨关节炎,OA,长链非编码RNA,长链非编码核糖核酸,LncRNA”为中文检索词,检索1976年至2024年5月发表的所有相关文献,并对其进行筛选、归纳、分析、总结,最后纳入93篇文献进行综述。
结果与结论:①收集了目前与骨性关节炎关系研究较多且较深入的25种长链非编码RNA;②长链非编码RNA可以充当miRNA的分子海绵,作为竞争性内源性RNA竞争性吸附miRNA,进而影响下游靶点;③长链非编码RNA可以调控软骨细胞的凋亡与增殖、软骨细胞外基质降解以及炎症反应等生理病理进程;④长链非编码RNA有望成为骨性关节炎临床诊断及治疗预后的生物标志物和潜在治疗靶点,未来可能会成为骨性关节炎临床治疗的新策略。
https://orcid.org/0009-0007-4321-282X(郑善斌)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
郑善斌, 夏天卫, 孙家豪, 陈志远, 曹 逊, 张 超, 沈计荣. 长链非编码RNA与骨性关节炎[J]. 中国组织工程研究, 2025, 29(11): 2357-2367.
Zheng Shanbin, Xia Tianwei, Sun Jiahao, Chen Zhiyuan, Cao Xun, Zhang Chao, Shen Jirong . Relationship between long non-coding RNA and osteoarthritis[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(11): 2357-2367.
[1] NG N, PARKINSON L, BROWN WJ, et al. Lifestyle behaviour changes associated with osteoarthritis: a prospective cohort study. Sci Rep. 2024;14(1):6242. [2] ZHANG L, ZHANG H, XIE Q, et al. LncRNA-mediated cartilage homeostasis in osteoarthritis: a narrative review. Front Med (Lausanne). 2024;11:1326843. [3] OKAZAKI Y, FURUNO M, KASUKAWA T, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002;420(6915):563-573. [4] RINN JL, KERTESZ M, WANG JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129(7):1311-1323. [5] RINN JL, CHANG HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145-166. [6] FATICA A, BOZZONI I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7-21. [7] SMITH JE, ALVAREZ-DOMINGUEZ JR, KLINE N, et al. Translation of small open reading frames within unannotated RNA transcripts in Saccharomyces cerevisiae. Cell Rep. 2014;7(6):1858-1866. [8] FU M, HUANG G, ZHANG Z, et al. Expression profile of long noncoding RNAs in cartilage from knee osteoarthritis patients. Osteoarthritis Cartilage. 2015;23(3):423-432. [9] ZHANG A, WANG G, JIA L, et al. Exosome-mediated microRNA-138 and vascular endothelial growth factor in endometriosis through inflammation and apoptosis via the nuclear factor-κB signaling pathway. Int J Mol Med. 2019;43(1):358-370. [10] PORCELLI L, DE SUMMA S, FASANO R, et al. miRNA lncRNA network associated with response to cemiplimab in cutaneous squamous cell carcinoma. Cancer Res. 2024;84(6_Supplement):5172. [11] CHOWDHURY MR, CHATTERJEE C, GHOSH D, et al. Deciphering miRNA-lncRNA-mRNA interaction through experimental validation of miRNAs, lncRNAs, and miRNA targets on mRNAs in Cajanus cajan. Plant Biol (Stuttg). 2024;26(4):560-567. [12] XU J, FANG X, QIN L, et al. LncRNA PVT1 regulates biological function of osteoarthritis cells by regulating miR-497/AKT3 axis. Medicine (Baltimore). 2022;101(45):e31725.
[13] LU X, YU Y, YIN F, et al. Knockdown of PVT1 inhibits IL-1β-induced injury in chondrocytes by regulating miR-27b-3p/TRAF3 axis. Int Immunopharmacol. 2020;79:106052. [14] YAO N, PENG S, WU H, et al. Long noncoding RNA PVT1 promotes chondrocyte extracellular matrix degradation by acting as a sponge for miR-140 in IL-1β-stimulated chondrocytes. J Orthop Surg Res. 2022;17(1):218. [15] LU Z, LUO M, HUANG Y. lncRNA-CIR regulates cell apoptosis of chondrocytes in osteoarthritis. J Cell Biochem. 2019;120(5):7229-7237. [16] WANG CL, PENG JP, CHEN XD. LncRNA-CIR promotes articular cartilage degeneration in osteoarthritis by regulating autophagy. Biochem Biophys Res Commun. 2018;505(3):692-698. [17] LI YF, LI SH, LIU Y, et al. Long Noncoding RNA CIR Promotes Chondrocyte Extracellular Matrix Degradation in Osteoarthritis by Acting as a Sponge For Mir-27b. Cell Physiol Biochem. 2017;43(2):602-610. [18] WANG Y, CAO L, WANG Q, et al. LncRNA FOXD2-AS1 induces chondrocyte proliferation through sponging miR-27a-3p in osteoarthritis. Artif Cells Nanomed Biotechnol. 2019;47(1):1241-1247. [19] CAO L, WANG Y, WANG Q, et al. LncRNA FOXD2-AS1 regulates chondrocyte proliferation in osteoarthritis by acting as a sponge of miR-206 to modulate CCND1 expression. Biomed Pharmacother. 2018;106:1220-1226. [20] FAN X, YUAN J, XIE J, et al. Long non-protein coding RNA DANCR functions as a competing endogenous RNA to regulate osteoarthritis progression via miR-577/SphK2 axis. Biochem Biophys Res Commun. 2018;500(3):658-664. [21] CHEN KT, YEH CT, YADAV VK, et al. Notopterol mitigates IL-1β-triggered pyroptosis by blocking NLRP3 inflammasome via the JAK2/NF-kB/hsa-miR-4282 route in osteoarthritis. Heliyon. 2024;10(6):e28094. [22] ZHANG L, ZHANG P, SUN X, et al. Long non-coding RNA DANCR regulates proliferation and apoptosis of chondrocytes in osteoarthritis via miR-216a-5p-JAK2-STAT3 axis. Biosci Rep. 2018;38(6):BSR20181228. [23] FANG P, ZHANG LX, HU Y, et al. Long non-coding RNA DANCR induces chondrogenesis by regulating the miR-1275/MMP-13 axis in synovial fluid-derived mesenchymal stem cells. Eur Rev Med Pharmacol Sci. 2019;23(23):10459-10469. [24] 房鹏.长链非编码RNA DANCR通过miR-1275/MMP-13诱导滑膜间充质干细胞增殖和向软骨分化的机制研究 [D].南京:南京大学, 2020. [25] ZHOU Y, LI J, XU F, et al. Long noncoding RNA H19 alleviates inflammation in osteoarthritis through interactions between TP53, IL-38, and IL-36 receptor. Bone Joint Res. 2022;11(8):594-607. [26] 刘旭剑,王东来,李增怀,等.lncRNA-H19通过靶向miR-106a-5p在骨关节炎软骨基质降解和钙化中的调控作用 [J].川北医学院学报, 2021,36(10):1265-1270. [27] ZHANG Z, HUANG G, MAO G, et al. Characterization of exosomal long non-coding RNAs in chondrogenic differentiation of human adipose-derived stem cells. Mol Cell Biochem. 2021;476(3):1411-1420. [28] LIANG WC, FU WM, WANG YB, et al. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci Rep. 2016;6:20121. [29] WU J, ZHAO J, SUN L, et al. Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138. Bone. 2018; 108:62-70. [30] 王宪峰,王锟,孙晗,等.脐带间充质干细胞外泌体LncRNA H19修复软骨损伤的机制[J].中国组织工程研究,2024,28(1):20-25. [31] XIONG G, WANG S, PAN Z, et al. Long non-coding RNA MEG3 regulates the progress of osteoarthritis by regulating the miR-34a/Klotho axis. Ann Transl Med. 2022;10(8):454. [32] WANG A, HU N, ZHANG Y, et al. MEG3 promotes proliferation and inhibits apoptosis in osteoarthritis chondrocytes by miR-361-5p/FOXO1 axis. BMC Med Genomics. 2019;12(1):201. [33] HUANG Y, CHEN D, YAN Z, et al. LncRNA MEG3 Protects Chondrocytes From IL-1β-Induced Inflammation via Regulating miR-9-5p/KLF4 Axis. Front Physiol. 2021;12:617654. [34] CHEN L, ZHANG T, ZHANG S, et al. Identification of Long Non-Coding RNA-Associated Competing Endogenous RNA Network in the Differentiation of Chicken Preadipocytes. Genes (Basel). 2019; 10(10):795. [35] 何小文,丁徐,张东华,等. LncRNA GAS5通过TIMP-3启动子甲基化促进软骨胶原蛋白降解的实验研究[J].实用骨科杂志,2021, 27(11): 999-1004. [36] ZHANG D, QIU S. LncRNA GAS5 upregulates Smad4 to suppress the apoptosis of chondrocytes induced by lipopolysaccharide. Arch Gerontol Geriatr. 2021;97:104478. [37] CAI L, HUANG N, ZHANG X, et al. Long non-coding RNA plasmacytoma variant translocation 1 and growth arrest specific 5 regulate each other in osteoarthritis to regulate the apoptosis of chondrocytes. Bioengineered. 2022;13(5):13680-13688. [38] HE X, GAO K, LU S, et al. LncRNA HOTTIP leads to osteoarthritis progression via regulating miR-663a/ Fyn-related kinase axis. BMC Musculoskelet Disord. 2021;22(1):67. [39] MAO G, KANG Y, LIN R, et al. Long Non-coding RNA HOTTIP Promotes CCL3 Expression and Induces Cartilage Degradation by Sponging miR-455-3p. Front Cell Dev Biol. 2019;7:161. [40] 王琦,蒋志阳,张宇,等.结直肠癌组织和血清外泌体lncRNA PCGEM1、miR-152-3p的表达及其临床意义[J].广西医科大学学报, 2023,40(11):1863-1870. [41] KANG Y, SONG J, KIM D, et al. PCGEM1 stimulates proliferation of osteoarthritic synoviocytes by acting as a sponge for miR-770. J Orthop Res. 2016;34(3):412-418. [42] SONG J, CHEN C, ZHANG H. LncRNA Prostate Cancer Gene Expression Marker 1 (PCGEM1) Down-Regulation Inhibits the Development of Osteoarthritis by Modulating miR-152-3p. J Biomater Tissue Eng. 2022. [43] KONG W, YIN G, ZHENG S, et al. Long noncoding RNA (lncRNA) HOTAIR: Pathogenic roles and therapeutic opportunities in gastric cancer. Genes Dis. 2021;9(5):1269-1280. [44] 范杰,金永明,江孝龙,等.lncRNA HOTAIR调控miR-206影响类风湿关节炎滑膜细胞增殖和凋亡的分子机制研究[J].中国临床药理学与治疗学,2023,28(7):736-742. [45] 张慧珍,吴伟,罗海涛.中低强度运动干预高脂饲养小鼠膝关节损伤软骨细胞LncRNA HOTAIR的表达[J].中国组织工程研究,2024, 28(11):1684-1689. [46] HE B, JIANG D. HOTAIR-induced apoptosis is mediated by sponging miR-130a-3p to repress chondrocyte autophagy in knee osteoarthritis. Cell Biol Int. 2020;44(2):524-535. [47] ZHENG T, HUANG J, LAI J, et al. Long non-coding RNA HOTAIRincreased mechanical stimulation-induced apoptosis by regulating microRNA-221/BBC3 axis in C28/I2 cells. Bioengineered. 2021;12(2):10734-10744. [48] DAI Y, LIU S, XIE X, et al. MicroRNA‑31 promotes chondrocyte proliferation by targeting C‑X‑C motif chemokine ligand 12. Mol Med Rep. 2019;19(3):2231-2237. [49] LU J, WU Z, XIONG Y. Knockdown of long noncoding RNA HOTAIR inhibits osteoarthritis chondrocyte injury by miR-107/CXCL12 axis. J Orthop Surg Res. 2021;16(1):410. [50] CHEN Y, ZHANG L, LI E, et al. Long-chain non-coding RNA HOTAIR promotes the progression of osteoarthritis via sponging miR-20b/PTEN axis. Life Sci. 2020;253:117685. [51] YANG Y, XING D, WANG Y, et al. A long non-coding RNA, HOTAIR, promotes cartilage degradation in osteoarthritis by inhibiting WIF-1 expression and activating Wnt pathway. BMC Mol Cell Biol. 2020; 21(1):53. [52] WANG B, SUN Y, LIU N, et al. LncRNA HOTAIR modulates chondrocyte apoptosis and inflammation in osteoarthritis via regulating miR-1277-5p/SGTB axis. Wound Repair Regen. 2021;29(3):495-504.
[53] ZENG S, TU M. The lncRNA MIAT/miR-181a-5p axis regulates osteopontin (OPN)-mediated proliferation and apoptosis of human chondrocytes in osteoarthritis. J Mol Histol. 2022;53(2):285-296.
[54] SUN PF, KONG WK, LIU L, et al. Osteopontin accelerates chondrocyte proliferation in osteoarthritis rats through the NF-κb signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(6):2836-2842. [55] PAN W, WANG H, RUAN J, et al. lncRNA myocardial infarction-associated transcript (MIAT) knockdown alleviates LPS-induced chondrocytes inflammatory injury via regulating miR-488-3p/sex determining region Y-related HMG-box 11 (SOX11) axis. Open Life Sci. 2021;16(1):511-522. [56] YUE Y, ZHIBO S, FENG L, et al. SNHG5 protects chondrocytes in interleukin-1β-stimulated osteoarthritis via regulating miR-181a-5p/TGFBR3 axis. J Biochem Mol Toxicol. 2021;35(10):e22866. [57] JIANG H, PANG H, WU P, et al. LncRNA SNHG5 promotes chondrocyte proliferation and inhibits apoptosis in osteoarthritis by regulating miR-10a-5p/H3F3B axis. Connect Tissue Res. 2021;62(6):605-614. [58] NIE T, ZHANG C, ZHANG G, et al. LncRNA CALML3-AS1 regulates chondrocyte apoptosis by acting as a sponge for miR-146a. Autoimmunity. 2021;54(6):336-342. [59] QIN GH, YANG WC, YAO JN, et al. LncRNA OIP5-AS1 affects the biological behaviors of chondrocytes of patients with osteoarthritis by regulating micro-30a-5p. Eur Rev Med Pharmacol Sci. 2021;25(3):1215-1224. [60] SUN Z, TANG J, YOU T, et al. LncRNA OIP5-AS1 promotes mitophagy to alleviate osteoarthritis by up-regulating PPAR-γ to activate AMPK/Akt/mTOR pathway. Mod Rheumatol. 2024. doi: 10.1093/mr/roae015. Epub ahead of print. [61] GU Y, WANG G, XU H. Long non-coding RNA ZNFX1 antisense 1 (ZFAS1) suppresses anti-oxidative stress in chondrocytes during osteoarthritis by sponging microRNA-1323. Bioengineered. 2022;13(5):13188-13200. [62] HAN J, LUO Z, WANG Y, et al. LncRNA ZFAS1 protects chondrocytes from IL-1β-induced apoptosis and extracellular matrix degradation via regulating miR-7-5p/FLRT2 axis. J Orthop Surg Res. 2023;18(1):320. [63] SHI M, SUN M, WANG C, et al. Therapeutic Potential of POU3F3, a Novel Long Non-coding RNA, Alleviates the Pathogenesis of Osteoarthritis by Regulating the miR-29a- 3p/FOXO3 Axis. Curr Gene Ther. 2022;22(5):427-438. [64] ZHANG D, SONG L, WANG X. NEAT1 attenuates osteoarthritis development by sponging miR-424-5p and up-regulating SMAD7 expression. Research Square. 2020[2024-05-17]. https://doi.org/10.21203/rs.2.20874/v1. [65] WANG Q, WANG W, ZHANG F, et al. NEAT1/miR-181c Regulates Osteopontin (OPN)-Mediated Synoviocyte Proliferation in Osteoarthritis. J Cell Biochem. 2017;118(11):3775-3784. [66] LIU F, LIU X, YANG Y, et al. NEAT1/miR-193a-3p/SOX5 axis regulates cartilage matrix degradation in human osteoarthritis. Cell Biol Int. 2020;44(4):947-957. [67] LI H, LIAN K, MAO J, et al. LncRNA LEMD1-AS1 relieves chondrocyte inflammation by targeting miR-944/PGAP1 in osteoarthritis. Cell Cycle. 2022;21(19):2038-2050. [68] HUANG F, SU Z, YANG J, et al. Downregulation of lncRNA NEAT1 interacts with miR-374b-5p/PGAP1 axis to aggravate the development of osteoarthritis. J Orthop Surg Res. 2023;18(1):670. [69] LUO X, WANG J, WEI X, et al. Knockdown of lncRNA MFI2-AS1 inhibits lipopolysaccharide-induced osteoarthritis progression by miR-130a-3p/TCF4. Life Sci. 2020;240:117019. [70] SHI J, CAO F, CHANG Y, et al. Long non-coding RNA MCM3AP-AS1 protects chondrocytes ATDC5 and CHON-001 from IL-1β-induced inflammation via regulating miR-138-5p/SIRT1. Bioengineered. 2021; 12(1):1445-1456. [71] GAO Y, ZHAO H, LI Y. LncRNA MCM3AP-AS1 regulates miR-142-3p/HMGB1 to promote LPS-induced chondrocyte apoptosis. BMC Musculoskelet Disord. 2019;20(1):605. [72] YANG Y, SUN Z, LIU F, et al. FGD5-AS1 Inhibits Osteoarthritis Development by Modulating miR-302d-3p/TGFBR2 Axis. Cartilage. 2021;13(2_suppl):1412S-1420S. [73] LI D, WANG X, YI T, et al. LncRNA MINCR attenuates osteoarthritis progression via sponging miR-146a-5p to promote BMPR2 expression. Cell Cycle. 2022;21(22):2417-2432. [74] WANG T, LIU Y, WANG Y, et al. Long non-coding RNA XIST promotes extracellular matrix degradation by functioning as a competing endogenous RNA of miR-1277-5p in osteoarthritis. Int J Mol Med. 2019;44(2):630-642. [75] LIU Y, LIU K, TANG C, et al. Long non-coding RNA XIST contributes to osteoarthritis progression via miR-149-5p/DNMT3A axis. Biomed Pharmacother. 2020;128:110349. [76] ZHU X, CHEN F, LU K, et al. PPARγ preservation via promoter demethylation alleviates osteoarthritis in mice. Ann Rheum Dis. 2019; 78(10):1420-1429. [77] LIAN LP, XI XY. Long non-coding RNA XIST protects chondrocytes ATDC5 and CHON-001 from IL-1β-induced injury via regulating miR-653-5p/SIRT1 axis. J Biol Regul Homeost Agents. 2020;34(2):379-391. [78] LI L, LV G, WANG B, et al. XIST/miR-376c-5p/OPN axis modulates the influence of proinflammatory M1 macrophages on osteoarthritis chondrocyte apoptosis. J Cell Physiol. 2020;235(1):281-293. [79] HUANG B, YU H, LI Y, et al. Upregulation of long noncoding TNFSF10 contributes to osteoarthritis progression through the miR-376-3p/FGFR1 axis. J Cell Biochem. 2019;120(12):19610-19620. [80] ZHANG Z, YANG P, WANG C, et al. LncRNA CRNDE hinders the progression of osteoarthritis by epigenetic regulation of DACT1. Cell Mol Life Sci. 2022;79(8):405. [81] YIN X, XIANG T, LI L, et al. DACT1, an antagonist to Wnt/β-catenin signaling, suppresses tumor cell growth and is frequently silenced in breast cancer. Breast Cancer Res. 2013;15(2):R23. [82] ZUO Y, XIONG C, GAN X, et al. LncRNA HAGLR silencing inhibits IL-1β-induced chondrocytes inflammatory injury via miR-130a-3p/JAK1 axis. J Orthop Surg Res. 2023;18(1):203. [83] LI Z, DAI A, YANG M, et al. p38MAPK Signaling Pathway in Osteoarthritis: Pathological and Therapeutic Aspects. J Inflamm Res. 2022;15:723-734. [84] 白春礼,马钢,苏日力格,等.NF-κB/MAPKs信号调节骨关节炎的研究进展[J].内蒙古医学杂志,2023,55(10):1208-1212. [85] 张晋宁.TGF-β信号转导通路中相关蛋白表达与膝骨性关节炎的研究[D].银川:宁夏医科大学,2023. [86] 李鑫.基于Wnt/β-catenin信号通路研究调膝法治疗膝骨性关节炎的作用机制[D].合肥:安徽中医药大学,2023. [87] LIU J, XIAO Q, XIAO J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3. [88] WANG YZ, YAO-LI, LIANG SK, et al. LncPVT1 promotes cartilage degradation in diabetic OA mice by downregulating miR-146a and activating TGF-β/SMAD4 signaling. J Bone Miner Metab. 2021;39(4): 534-546. [89] HERRMANN IK, WOOD MJA, FUHRMANN G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021; 16(7):748-759. [90] YAN L, LIU G, WU X. The umbilical cord mesenchymal stem cell-derived exosomal lncRNA H19 improves osteochondral activity through miR-29b-3p/FoxO3 axis. Clin Transl Med. 2021;11(1):e255. [91] ZHANG S, JIN Z. Bone Mesenchymal Stem Cell-Derived Extracellular Vesicles Containing Long Noncoding RNA NEAT1 Relieve Osteoarthritis. Oxid Med Cell Longev. 2022;2022:5517648. [92] 樊渝川,殷涵,李钰,等.mRNA疫苗与脂质纳米颗粒递送载体的研究进展[J/OL].科学通报,1-11[2024-05-17].http://kns.cnki.net/kcms/detail/11.1784.N.20240315.1710.002.html. [93] KONG YL, WANG HD, GAO M, et al. LncRNA XIST promotes bladder cancer progression by modulating miR-129-5p/TNFSF10 axis. Discov Oncol. 2024;15(1):65. |
[1] | 赵济宇, 王少伟. 叉头框转录因子O1信号通路与骨代谢[J]. 中国组织工程研究, 2025, 29(9): 1923-1930. |
[2] | 于经邦, 吴亚云. 非编码RNA在肺纤维化过程中的调控作用[J]. 中国组织工程研究, 2025, 29(8): 1659-1666. |
[3] | 王秋月, 靳 攀, 蒲 锐. 运动干预与细胞焦亡在骨关节炎中的作用[J]. 中国组织工程研究, 2025, 29(8): 1667-1675. |
[4] | 袁维勃, 刘 婵, 余丽梅. 肝脏类器官在肝脏疾病模型与移植治疗中的应用潜力[J]. 中国组织工程研究, 2025, 29(8): 1684-1692. |
[5] | 尹 路, 蒋川锋, 陈俊杰, 易 明, 王子赫, 石厚银, 汪国友, 沈骅睿. 沙苑子苷A对关节软骨细胞凋亡的影响[J]. 中国组织工程研究, 2025, 29(8): 1541-1547. |
[6] | 刘 琪, 李林臻, 李玉生, 焦泓焯, 杨 程, 张君涛. 淫羊藿苷含药血清促进3种细胞共培养体系中软骨细胞增殖和干细胞成软骨分化[J]. 中国组织工程研究, 2025, 29(7): 1371-1379. |
[7] | 杨治航, 孙祖延, 黄文良, 万 喻, 陈仕达, 邓 江. 神经生长因子促进兔骨髓间充质干细胞软骨分化并抑制肥大分化[J]. 中国组织工程研究, 2025, 29(7): 1336-1342. |
[8] | 项 攀, 车艳军, 罗宗平. 压应力激活SOST/Wnt/β-catenin通路诱导软骨终板细胞退变[J]. 中国组织工程研究, 2025, 29(5): 951-957. |
[9] | 司马鑫利, 刘丹平, 綦 惠. 二甲双胍修饰骨髓间充质干细胞外泌体调节软骨细胞的作用及机制[J]. 中国组织工程研究, 2025, 29(36): 7728-7734. |
[10] | 黎庭悦, 郭 倩, 何文喜, 吴家媛. 长链非编码RNA TP53TG1促进根尖牙乳头干细胞成牙本质及成骨分化[J]. 中国组织工程研究, 2025, 29(36): 7776-7782. |
[11] | 马维邦, 徐 哲, 喻 乔, 欧阳东, 张如国, 罗 伟, 谢阳江, 刘 琛. 骨关节炎关节液外泌体中软骨退变相关基因筛选及细胞学验证[J]. 中国组织工程研究, 2025, 29(36): 7783-7789. |
[12] | 纪 龙, 陈子扬, 靳 攀, 孔祥魁, 蒲 锐, . 脂肪自噬、运动干预与非酒精性脂肪肝的防治[J]. 中国组织工程研究, 2025, 29(35): 7611-7619. |
[13] | 柳承源, 过倩萍. Kartogenin对大鼠和兔源骨髓间充质干细胞成软骨与成骨分化的差异性影响[J]. 中国组织工程研究, 2025, 29(35): 7490-7498. |
[14] | 尹 航, 宋 奎. 藏红花素水凝胶对软骨细胞与MC3T3-E1细胞的影响[J]. 中国组织工程研究, 2025, 29(34): 7293-7300. |
[15] | 于庆贺, 蔡子鸣, 吴锦涛, 马鹏飞, 张 鑫, 周龙千, 王亚坤, 林晓钦, 林文平. 香草酸抑制终板软骨细胞炎症反应和细胞外基质降解[J]. 中国组织工程研究, 2025, 29(30): 6391-9397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||