中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (7): 1448-1456.doi: 10.12307/2025.009

• 干细胞相关大数据分析 Stem cell-related big data analysis • 上一篇    下一篇

间充质细胞源性骨肉瘤中关键分子标志物鉴定及药物敏感性分析

张昊军1,李泓毅2,3,张  辉4,陈浩然5,张力中1,耿  杰1,侯传东2,3,于  琦5,贺培凤5,贾金鹏6,卢学春1,2   

  1. 山西医科大学,1基础医学院,4医学科学院,5管理学院,山西省太原市   030600;2中国人民解放军总医院第二医学中心血液病科,国家老年疾病临床医学研究中心,北京市   100853;3解放军医学院,北京市   100853;6中国人民解放军总医院第四医学中心骨科医学部,北京市   100853
  • 收稿日期:2023-11-08 接受日期:2024-01-15 出版日期:2025-03-08 发布日期:2024-06-27
  • 通讯作者: 卢学春,博士,教授,主任医师,山西医科大学基础医学院,山西省太原市 030600;中国人民解放军总医院第二医学中心血液病科,国家老年疾病临床医学研究中心,北京市 100853 共同通讯作者:贾金鹏,博士,主任医师,中国人民解放军总医院第四医学中心骨科医学部,北京市 100853
  • 作者简介:张昊军,男,1998年生,山西医科大学在读硕士,主要从事医学信息学和临床生物信息学方面的研究。
  • 基金资助:
    国家重点研发计划(2020YFC2002706-2),项目负责人:卢学春;山西省健康医疗大数据智能平台关键技术研究(201903D311011),项目负责人:于琦;军队后勤自主科研课题(2022HQZZ06),项目负责人:卢学春

Identification and drug sensitivity analysis of key molecular markers in mesenchymal cell-derived osteosarcoma

Zhang Haojun1, Li Hongyi2, 3, Zhang Hui4, Chen Haoran5, Zhang Lizhong1, Geng Jie1, Hou Chuandong2, 3, Yu Qi5, He Peifeng5, Jia Jinpeng6, Lu Xuechun1, 2   

  1. 1School of Basic Medicine, Shanxi Medical University, Taiyuan 030600, Shanxi Province, China; 2Department of Hematology, Second Medical Center, Chinese PLA General Hospital, National Center for Clinical Research of Geriatric Diseases, Beijing 100853, China; 3Chinese PLA Medical College, Beijing 100853, China; 4Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030600, Shanxi Province, China; 5School of Management, Shanxi Medical University, Taiyuan 030600, Shanxi Province, China; 6Department of Orthopedic Medicine, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
  • Received:2023-11-08 Accepted:2024-01-15 Online:2025-03-08 Published:2024-06-27
  • Contact: Lu Xuechun, MD, Professor, Chief physician, School of Basic Medicine, Shanxi Medical University, Taiyuan 030600, Shanxi Province, China; Department of Hematology, Second Medical Center, Chinese PLA General Hospital, National Center for Clinical Research of Geriatric Diseases, Beijing 100853, China; Jia Jinpeng, MD, Chief physician, Department of Orthopedic Medicine, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
  • About author:Zhang Haojun, Master candidate, School of Basic Medicine, Shanxi Medical University, Taiyuan 030600, Shanxi Province, China
  • Supported by:
    National Key Research & Development Program, No. 2020YFC2002706-2 (to LXC); Key Technology Research on Shanxi Province Health and Medical Big Data Intelligent Platform, No. 201903D311011 (to YQ); Military Logistics Independent Research Project, No. 2022HQZZ06 (to LXC) 

摘要:

文题释义:

生物信息学分析:是一种在生物信息学领域中进行数据处理和解释的过程,旨在从生物学数据中提取有关生物体系和分子机制的信息。
药物敏感性:是一种用于评估不同药物对疾病或肿瘤细胞治疗效果的实验方法。它的主要目的是确定哪种药物或药物组合对患者的疾病或细胞株最具疗效,以便个体化治疗。这种分析在癌症治疗中特别有用,因为不同的肿瘤类型和患者可能对同一种药物有不同的反应。


背景:骨肉瘤发病机制复杂,预后较差,随着医疗技术的发展,其5年生存率有所改善,但仍未取得实质性进展。
目的:筛选骨肉瘤中关键分子标志物,分析其与骨肉瘤治疗药物之间的关系,并从分子水平探讨骨肉瘤可能的疾病机制。
方法:从基因表达谱数据库中获取GSE99671和GSE28425(miRNA),对GSE99671进行差异表达基因分析和加权基因共表达网络分析(WGCNA)。利用基因本体学(GO)和京都基因与基因组百科全书(KEGG)分别对差异表达基因和与疾病正相关性最高的模块基因进行功能富集分析。将上述模块基因与差异表达基因取交集作为关键基因,构建蛋白质相互作用网络,使用CytoScape软件对关键基因进行相关性分析,筛选枢纽基因(Hub基因)。使用GSE28425数据集对Hub基因进行外部验证,同时对Hub基因进行文本验证。使用CellMiner数据库对Hub基因进行药物敏感性分析,依据关联系数的绝对值|R| > 0.3,P < 0.05作为阈值进行筛选。

结果与结论:①差异表达分析获得529个差异表达基因,其中177个表达上调,352个表达下调;WGCNA分析共得到592个与骨肉瘤相关性最高的基因;②GO富集结果显示骨肉瘤的发生发展可能与细胞外基质、骨细胞的分化与发育、人体的免疫调控、胶原蛋白的合成与分解相关;KEGG富集结果显示PI3K-Akt信号通路、焦点黏附信号通路、免疫应答等参与骨肉瘤疾病的发生;③交集结果显示,共获得59个关键基因,经蛋白质相互作用网络分析,筛选得到8个Hub基因,分别为LUM、PLOD1、PLOD2、MMP14、COL11A1、THBS2、LEPRE1、TGFB1,且均为表达上调;④外部验证发现调控Hub基因的miRNA明显下调,其中hsa-miR-144-3p和hsa-miR-150-5p的下调最为显著;文本验证结果显示Hub基因的表达与既往研究基本一致;⑤药物敏感性分析发现甲氨蝶呤、异环磷酰胺、帕博西尼的活性与PLOD1、PLOD2、MMP14的mRNA表达呈负相关关系;而唑来膦酸、雷帕霉素的活性与PLOD1、LUM、MMP14、PLOD2、TGFB1的mRNA表达呈正相关关系,提示唑来膦酸和雷帕霉素有望成为骨肉瘤的潜在治疗药物,但仍需进一步基础实验和临床研究加以验证。

https://orcid.org/0009-0007-1536-6928 (张昊军) 


中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 骨肉瘤, 分子标志物, 信号通路, 药物预测, WGCNA, 药物敏感性, 生物信息学

Abstract: BACKGROUND: Osteosarcoma has a complex pathogenesis and a poor prognosis. While advancements in medical technology have led to some improvements in the 5-year survival rate, substantial progress in its treatment has not yet been achieved.
OBJECTIVE: To screen key molecular markers in osteosarcoma, analyze their relationship with osteosarcoma treatment drugs, and explore the potential disease mechanisms of osteosarcoma at the molecular level. 
METHODS: GSE99671 and GSE284259 (miRNA) datasets were obtained from the Gene Expression Omnibus database. Differential gene expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA) on GSE99671 were performed. Functional enrichment analysis was conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes separately for the differentially expressed genes and the module genes with the highest positive correlation to the disease. The intersection of these module genes and differentially expressed genes was taken as key genes. A Protein-Protein Interaction network was constructed, and correlation analysis on the key genes was performed using CytoScape software, and hub genes were identified. Hub genes were externally validated using the GSE28425 dataset and text validation was conducted. The drug sensitivity of hub genes was analyzed using the CellMiner database, with a threshold of absolute value of correlation coefficient |R| > 0.3 and P < 0.05. 
RESULTS AND CONCLUSION: (1) Differential gene expression analysis identified 529 differentially expressed genes, comprising 177 upregulated and 352 downregulated genes. WGCNA analysis yielded a total of 592 genes with the highest correlation to osteosarcoma. (2) Gene Ontology enrichment results indicated that the development of osteosarcoma may be associated with extracellular matrix, bone cell differentiation and development, human immune regulation, and collagen synthesis and degradation. Kyoto Encyclopedia of Genes and Genomes enrichment results showed the involvement of pathways such as PI3K-Akt signaling pathway, focal adhesion signaling pathway, and immune response in the onset of osteosarcoma. (3) The intersection analysis revealed a total of 59 key genes. Through Protein-Protein Interaction network analysis, 8 hub genes were selected, which were LUM, PLOD1, PLOD2, MMP14, COL11A1, THBS2, LEPRE1, and TGFB1, all of which were upregulated. (4) External validation revealed significantly downregulated miRNAs that regulate the hub genes, with hsa-miR-144-3p and hsa-miR-150-5p showing the most significant downregulation. Text validation results demonstrated that the expression of hub genes was consistent with previous research. (5) Drug sensitivity analysis indicated a negative correlation between the activity of methotrexate, 6-mercaptopurine, and pazopanib with the mRNA expression of PLOD1, PLOD2, and MMP14. Moreover, zoledronic acid and lapatinib showed a positive correlation with the mRNA expression of PLOD1, LUM, MMP14, PLOD2, and TGFB1. This suggests that zoledronic acid and lapatinib may be potential therapeutic drugs for osteosarcoma, but further validation is required through additional basic experiments and clinical studies.

Key words: osteosarcoma, molecular marker, signaling pathway, drug prediction, WGCNA, drug sensitivity, bioinformatics

中图分类号: