中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (6): 1108-1117.doi: 10.12307/2025.306

• 组织构建实验造模 experimental modeling in tissue construction • 上一篇    下一篇

经颅磁声电刺激强度对小鼠前额叶皮质网络可塑性的影响

张  帅1,2,李子春1,2,徐亦豪1,2,谢晓峰1,2,郭忠圣1,2,赵清扬1,2   

  1. 1省部共建电工装备可靠性与智能化国家重点实验室,生命科学与健康工程学院,河北工业大学,天津市  300401;2天津市生物电工与智能健康重点实验室,生命科学与健康工程学院,河北工业大学,天津市  300401

  • 收稿日期:2023-12-26 接受日期:2024-03-27 出版日期:2025-02-28 发布日期:2024-06-20
  • 通讯作者: 张帅,博士,教授,省部共建电工装备可靠性与智能化国家重点实验室,生命科学与健康工程学院,河北工业大学,天津市 300401;天津市生物电工与智能健康重点实验室,生命科学与健康工程学院,河北工业大学,天津市 300401
  • 作者简介:张帅,男,1978年生,河北省保定市人,汉族,2002年河北工业大学毕业,博士,教授,主要从事生物电磁技术方向的研究。
  • 基金资助:
    国家自然科学基金资助项目(51877069),项目负责人:张帅;河北省自然科学基金资助项目(E2021202184),项目负责人:张帅

Effect of transcranial magneto-acousto-electrical stimulation on the plasticity of the prefrontal cortex network in mice 

Zhang Shuai1, 2, Li Zichun1, 2, Xu Yihao1, 2, Xie Xiaofeng1, 2, Guo Zhongsheng1, 2, Zhao Qingyang1, 2   

  1. 1State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; 2Tianjin Key Laboratory of Bioelectromagnetism and Intelligent Health, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
  • Received:2023-12-26 Accepted:2024-03-27 Online:2025-02-28 Published:2024-06-20
  • Contact: Zhang Shuai, PhD, Professor, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Bioelectromagnetism and Intelligent Health, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
  • Supported by:
    National Natural Science Foundation of China, No. 51877069 (to ZS); Natural Science Foundation of Hebei Province, No. E2021202184 (to ZS)

摘要:




文题释义:
非接触性前交叉韧带损伤:根据损伤时的状态将前交叉韧带损伤划分为接触性损伤和非接触性损伤。非接触性前交叉韧带损伤的常见损伤动作有3种,包括跳跃后着地、行进中突然制动、突然变向伴随膝关节扭转,与此同时,在膝微曲(5°-25°),处于外翻位,在这种情况下,前交叉韧带更易损伤。
跳跃落地:是体育运动中常见的动作之一,其落地过程中若出现异常的关节运动学、动力学等异常改变往往提示运动损伤风险的增高。

背景:研究发现运动者解剖结构、激素水平、神经肌肉功能等内部因素与前交叉韧带损伤风险密切相关,而运动场地材质等外部因素也成为影响非接触性前交叉韧带损伤发生的危险因素之一,但目前研究中对其关注度相对不足。
目的:探讨人工草地和天然草地对青年女性跳跃落地时下肢生物力学表现影响。
方法:根据测试需要将符合GB/T 20033.3-2006以及GB/T 19995.1-2005标准的人工草地和天然草地平整固定于2块三维测力台上。21名青年女性自愿受试者分别在人工草地和天然草地完成跳跃落地任务。受试者站立于台阶上随后向前跳跃,跳落至测力台后立即全力纵跳并再次落至测力台上,2次落地均要求双脚分别落至2块测力台上,整个跳跃动作流畅无停顿视为成功。同步采集下肢落地过程中运动学、动力学及肌电数据,比较分析二者差异。
结果与结论:①动力学方面,在天然草地进行跳跃落地任务时初始触地时刻后向地面反作用力、纵向地面反作用力显著低于在人工草地时(P < 0.05;P < 0.01);峰值地面反作用力时刻二者亦显著低于在人工草地时(P < 0.05;P < 0.05),且表现出更高的膝关节屈曲力矩(P < 0.01)。②肌电方面,在天然草地进行跳跃落地任务时初始触地时刻后100 ms内股内侧肌、股外侧肌、胫骨前肌肌电活动水平显著低于在人工草地时(P < 0.05;P < 0.01;P < 0.05)。③结果说明,在人工草地进行跳跃落地任务时较天然草地时会出现使前交叉韧带张力升高的生物力学表现。
https://orcid.org/0000-0003-4480-533X(张帅)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 人工草地, 天然草地, 跳跃落地, 生物力学, 青年女性

Abstract:
BACKGROUND:
Transcranial magneto-acoustic-electrical stimulation is a novel non-invasive neural regulation technique that utilizes the induced electric field generated by the coupling effect of ultrasound and static magnetic field to regulate the discharge activity of the nervous system. However, the mechanism by which it affects synaptic plasticity in the brain is still not enough.
OBJECTIVE: To explore the effect of transcranial magneto-acoustic-electrical stimulation intensity on synaptic plasticity of the prefrontal cortex neural network in mice.
METHODS: (1) Animal experiment: Twenty-four C57 mice were equally and randomly divided into four groups: the control group receiving pseudo-stimulation, the 6.35 W/cm2 stimulation group receiving coupled stimulation of 0.3 T, 6.35 W/cm2, the 17.36 W/cm2 stimulation group receiving coupled stimulation of 0.3 T, 17.36 W/cm2, and the 56.25 W/cm2 stimulation group receiving coupled stimulation of 0.3 T, 56.25 W/cm2. The local field potential signals and behavioral correctness were recorded during the execution of T-maze in mice. (2) Modeling and simulation experiments: A neural network model of the prefrontal cortex in mice stimulated by transcranial magneto-acoustic-electrical stimulation was constructed to compare the structural connectivity characteristics of the neural network under different stimulation intensities. 
RESULTS AND CONCLUSION: Transcranial magneto-acoustic-electrical stimulation could effectively shorten the behavior learning time, improve the working memory ability of mice (P < 0.05), and continue to stimulate the frontal lobe of mice after learning behavior. There was no significant difference in the accuracy of the T-maze behavioral experiment among the experimental groups (P > 0.1). Analysis of local field potential signals in the frontal lobe of mice revealed that transcranial magneto-acoustic-electrical stimulation promoted energy enhancement of β and γ rhythms. As the stimulation intensity increased, there was an asynchronous decrease in β and γ rhythms. Through β-γ phase amplitude coupling, it was found that stimuli could enhance the neural network’s ability to adapt to new information and task requirements. Modeling and simulation experiments found that stimulation could enhance the discharge level of the neural network, increase the long-term synaptic weight level, and decrease the short-term synaptic weight level only when the stimulation intensity was high. To conclude, there is a complex nonlinear relationship between different stimulus intensities and the functional structure of neural networks. This neural regulation technique may provide new possibilities for the treatment of related neurological diseases such as synaptic dysfunction and neural network abnormalities.

Key words: transcranial magneto-acoustic-electrical stimulation, working memory, synaptic plasticity, cortical network, LIF neuron model

中图分类号: