中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (7): 1021-1028.doi: 10.12307/2024.107

• 干细胞基础实验 basic experiments of stem cells • 上一篇    下一篇

miR-20a调控压力超负荷型心肌肥大

孙  腾,韩  瑜,王  霜,李佳蕾,曹济民   

  1. 山西医科大学细胞生理学教育部重点实验室,山西省细胞生理学重点实验室,山西医科大学生理学系,山西省太原市   030001
  • 收稿日期:2023-01-16 接受日期:2023-02-24 出版日期:2024-03-08 发布日期:2023-07-15
  • 通讯作者: 曹济民,博士,教授,博士生导师,国家杰青,山西医科大学细胞生理学教育部重点实验室,山西省细胞生理学重点实验室,山西医科大学生理学系,山西省太原市 030001
  • 作者简介:孙腾,女,1988年生,山西省太原市人,汉族,中国科学院大学毕业,博士,副教授,硕士生导师,主要从事心肌损伤的表观遗传学调控机制研究。
  • 基金资助:
    国家自然科学基金(82170294,81800268),项目负责人:孙腾;国家自然科学基金(82170523),项目负责人:曹济民;中央引导地方科技发展资金项目(YDZJSX2022A061),项目负责人:孙腾;山西省“1331工程”基础医学重点学科建设计划(XK201708),项目负责人:曹济民

miR-20a regulates pressure overload-induced cardiac hypertrophy

Sun Teng, Han Yu, Wang Shuang, Li Jialei, Cao Jimin   

  1. Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2023-01-16 Accepted:2023-02-24 Online:2024-03-08 Published:2023-07-15
  • Contact: Cao Jimin, MD, Professor, Doctoral supervisor, Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • About author:Sun Teng, MD, Associate professor, Master’s supervisor, Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Supported by:
    National Natural Science Foundation of China, No. 82170294, 81800268 (to ST); National Natural Science Foundation of China, No. 82170523 (to CJM); The Central Leading Local Science and Technology Development Fund Project, No. YDZJSX2022A061 (to ST); Shanxi Province “1331 Project” Key Discipline Construction Plan of Basic Medicine, No. XK201708 (to CJM)

摘要:


文题释义:

心肌肥大:心肌肥大通常表现为心肌细胞增大和心室壁增厚,这种变化最初是用来维持心输出量的生理性适应性反应,而当受到持续的病理性刺激时,会引起病理性心肌肥大,并可能导致心力衰竭。
线粒体分裂:线粒体通过不断地经历融合和分裂来调节它们的形态、分布和功能,线粒体为心脏的收缩和代谢提供能量,线粒体分裂参与了心肌肥大的调控。

背景:心肌肥大是心脏对压力超负荷等生理和病理刺激所做出的适应性反应,早期具有代偿意义,若刺激持续进行可引起心肌病变导致心力衰竭。microRNAs参与调控了心肌肥大的发生发展,然而miR-20a在压力超负荷所致心肌肥大中的作用尚未见报道。

目的:探究miR-20a在压力超负荷所致心肌肥大中的作用及其机制。
方法:横向主动脉缩窄术诱导心肌肥大小鼠模型,使用血管紧张素Ⅱ诱导心肌肥大H9c2细胞模型。体内实验在小鼠心脏原位注射
miR-20a过表达腺病毒,体外实验将miR-20a mimic转染至H9c2细胞。通过检测心质量/体质量比值、细胞表面积、心肌纤维化等指标评估心肌肥大,实时荧光定量PCR法检测心房利钠肽、脑利钠肽、β-肌球蛋白重链和miR-20a的表达水平,MitoTracker法检测线粒体分裂情况,RNAhybrid软件预测miR-20a的下游靶基因。

结果与结论:①在心肌肥大细胞模型和动物模型中,miR-20a的表达水平均显著降低(P < 0.05);②在动物水平,过表达miR-20a显著抑制了横向主动脉缩窄手术诱导的心肌肥大,包括抑制了肥大标志基因表达水平的升高(P < 0.05),抑制了心脏体积的增大,抑制了心质量/体质量比值的升高(P < 0.01),抑制了心肌横截面积的增大(P < 0.05)以及减轻了心肌纤维化程度(P < 0.01);③在细胞水平,过表达miR-20a显著抑制了血管紧张素Ⅱ诱导的心肌细胞肥大,包括抑制了心房利钠肽(P < 0.05)、脑钠肽(P < 0.01)、β-肌球蛋白重链(P < 0.05)等肥大标志基因表达水平的升高,抑制了蛋白质/DNA比值的升高(P < 0.01),抑制了细胞表面积的增大(P < 0.05);④过表达miR-20a显著抑制了血管紧张素Ⅱ诱导的线粒体分裂(P < 0.05);⑤RNAhybrid软件分析结果显示miR-20a与蛋白质活化酶抑制剂 α mRNA的3’非翻译区可以很好地互补配对,且预测的结合位点具有高度保守性;⑥结果表明,在压力超负荷心肌肥大模型中miR-20a表达水平显著下调,过表达miR-20a可在细胞水平和动物水平抑制心肌肥大表型,并减轻血管紧张素Ⅱ诱导的心肌细胞线粒体分裂。

https://orcid.org/0000-0003-0324-7829 (孙腾)   https://orcid.org/0000-0002-6546-555X(曹济民) 

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: miR-20a, 心肌肥大, 血管紧张素Ⅱ, 横向主动脉缩窄术, 线粒体分裂

Abstract: BACKGROUND: Cardiac hypertrophy is an adaptive response of the heart to physiological and pathological stimuli such as pressure overload. It is of compensatory significance in the early stage, but if the stimulation continues, it can cause cardiomyopathy leading to heart failure. MicroRNAs are involved in the regulation of cardiac hypertrophy. However, the role of miR-20a in pressure overload-induced cardiac hypertrophy has not been reported.
OBJECTIVE: To investigate the role of miR-20a in pressure overload-induced cardiac hypertrophy and the underlying mechanisms.
METHODS: Transverse aortic constriction was used to induce cardiac hypertrophy in vivo and angiotensin II was used to induce H9c2 cell models of cardiac hypertrophy in vitro. MiR-20a was overexpressed in vivo by intramyocardial injection of miR-20a overexpressing adenovirus and in vitro by transfecting miR-20a mimic into H9c2 cells. Cardiac hypertrophy was assessed by measuring heart weight/body weight ratio, cell surface area, and myocardial fibrosis. The expression levels of atrial natriuretic peptide, brain natriuretic peptide, β-myosin heavy chain and miR-20a were detected by real-time fluorescence quantitative PCR. Mitochondrial fission was detected by MitoTracker. The downstream target genes of miR-20a were predicted by RNAhybrid software.
RESULTS AND CONCLUSION: (1) The expression level of miR-20a was significantly decreased in both hypertrophic cardiomyocytes and hearts (P < 0.05). (2) At the animal level, overexpression of miR-20a significantly inhibited transverse aortic constriction-induced cardiac hypertrophy, including decreasing the upregulated expression level of hypertrophic marker genes (P < 0.05), reduced the enlarged heart volume, reducing the increased heart weight/body weight ratio (P < 0.01), reducing the increased myocardial cross-sectional area (P < 0.05), and attenuating fibrosis (P < 0.01). (3) At the cellular level, overexpression of miR-20a significantly inhibited angiotensin II-induced cardiomyocyte hypertrophy, including decreasing the upregulated expression levels of atrial natriuretic peptide (P < 0.05), brain natriuretic peptide (P < 0.01) and β-myosin heavy chain (P < 0.05), reducing the increased protein/DNA ratio (P < 0.01), and suppressing the increased cell surface area (P < 0.05). (4) Overexpression of miR-20a significantly inhibited angiotensin II-induced mitochondrial fission (P < 0.05). (5) The results of RNAhybrid software analysis showed that miR-20a and the mRNA 3’ untranslated region of cAMP-dependent protein kinase inhibitor alpha were well complementary and the predicted binding sites were highly conserved. (6) In conclusion, miR-20a is significantly down-regulated in pressure overload-induced cardiac hypertrophy. Overexpression of miR-20a inhibits cardiac hypertrophy at both the cellular level and animal level and attenuates angiotensin II-induced mitochondrial fission.

Key words: miR-20a, cardiac hypertrophy, angiotensin II, transverse aortic constriction, mitochondrial fission

中图分类号: