中国组织工程研究 ›› 2019, Vol. 23 ›› Issue (34): 5497-5502.doi: 10.3969/j.issn.2095-4344.1936

• 材料生物相容性 material biocompatibility • 上一篇    下一篇

3D打印三维多孔海洋贝壳/鹿瓜多肽支架材料的生物相容性

楼  毅,张志文
  

  1. 上海东方肝胆外科医院骨科,上海市  200438
  • 收稿日期:2019-06-20 出版日期:2019-12-08 发布日期:2019-12-08
  • 作者简介:楼毅,男,1983年生,浙江省慈溪市人,2012年温州医科大学毕业,硕士,主治医师,主要从事脊柱、生物组织工程研究。
  • 基金资助:

    上海市卫生和计划生育委员会青年基金(20164Y0158),项目负责人:楼毅

Biocompatibility of 3D printed three-dimensional porous marine shell/cervus and cucumis polypeptide composite scaffold material

Lou Yi, Zhang Zhiwen
  

  1. Department of Orthopedics, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
  • Received:2019-06-20 Online:2019-12-08 Published:2019-12-08
  • About author:Lou Yi, Master, Attending physician, Department of Orthopedics, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
  • Supported by:

    The Youth Fund of Shanghai Commission of Health and Family Planning, No. 20164Y0158 (to LY)

摘要:

文章快速阅读:

 

文题释义:
鹿瓜多肽:作为中国拥有自主知识产权的复方制剂,其主要来源于梅花鹿和甜瓜种子的提取物,含有多种骨诱导因子及生长因子,能促进成骨细胞增殖,增加骨钙沉积,促进骨质生长,增强骨骼强度,但鹿瓜多肽药物扩散快、半衰期短、利用率低,不利于骨的重建与修复。
骨传导:是指在骨折愈合或骨缺损修复过程中,需要有一个媒介为在新骨形成及血管长入提供一个支架,如异体骨、瑞特人工骨等。
 
 
背景:人工骨的研制已成为骨组织工程的热点,临床实践证明单一性质的骨材料不能很好地满足临床需要,这使得复合支架材料的研制及应用受到了关注。
目的:3D打印制备三维多孔海洋贝壳/鹿瓜多肽生物支架材料,表征其生物相容性。
方法:利用3D打印技术制备多孔海洋贝壳/鹿瓜多肽复合支架材料,表征材料的组成成分、微观结构、力学强度。利用倒置显微镜与CCK-8实验检测多孔海洋贝壳/鹿瓜多肽生物支架材料对成骨细胞的毒性;利用扫描电镜观察成骨细胞在多孔海洋贝壳/鹿瓜多肽生物支架材料上的生长及黏附情况;利用急性毒性实验、肌肉植入实验与骨缺损植入实验检验多孔海洋贝壳/鹿瓜多肽生物支架材料的生物相容性。实验方案经解放军第二军医大学伦理委员会批准。
结果与结论:①多孔海洋贝壳/鹿瓜多肽生物支架材料主要由碳酸钙、生物多肽组成,抗压强度达到10 MP以上,孔隙率达85%以上,孔径为50-100 µm;②成骨细胞在多孔海洋贝壳/鹿瓜多肽生物支架材料浸提液中生长良好,细胞活性强,多孔海洋贝壳/鹿瓜多肽生物支架材料浸提液的细胞毒性为1级;③成骨细胞可在多孔海洋贝壳/鹿瓜多肽生物支架材料表面黏附、增殖;④多孔海洋贝壳/鹿瓜多肽生物支架材料可在体内降解,未引发动物全身毒性反应,无肌肉刺激反应,可促进骨缺损的修复;⑤结果表明,多孔海洋贝壳/鹿瓜多肽生物支架材料具有良好的力学性能、三维空间结构、细胞相容性与组织相容性。

关键词: 3D打印, 海洋贝壳, 鹿瓜多肽, 骨修复材料, 生物相容性, 骨缺损, 成骨细胞, 骨诱导

Abstract:

BACKGROUND: The development of artificial bone has become a hot spot in bone tissue engineering. Clinical practice has proved that single component bone materials can not meet the clinical needs very well. Therefore, the development and application of composite scaffold materials have been paid more concern.
OBJECTIVE: To prepare three-dimensional porous marine shell/cervus and cucumis polypeptide composite scaffold material by 3D printing technology and investigate its biocompatibility.
METHODS: The porous marine shell/ cervus and cucumis polypeptide composite scaffold material was prepared by 3D printing technology. Its composition, microstructure and mechanical strength of the material were investigated. The toxicity of porous marine shell/lugua polypeptide bioscaffold materials to osteoblasts was detected by inverted microscopy and CCK-8 assay. The growth and adhesion of osteoblasts on the porous marine shell/ cervus and cucumis polypeptide composite scaffold material was determined by scanning electron microscopy. The biocompatibility of porous marine shell/cervus and cucumis polypeptide composite scaffold material was determined by acute toxicity test, muscle implantation test and bone defect implantation experiment. The study protocol was approved by the Ethics Committee of the Second Military Medical University, China.
RESULTS AND CONCLUSION: The porous marine shell/cervus and cucumis polypeptide composite scaffold material was mainly composed of calcium carbonate and biological polypeptide, with 10 MP or more compressive strength, more than 85%porosity, and 50-100 μm pore diameter. Osteoblasts grew well in the porous marine shell/cervus and cucumis polypeptide composite scaffold material, and cell viability was strong. The cytotoxicity of the scaffold material was grade 1. Osteoblasts could adhere and proliferate on the surface of the scaffold material. The scaffold material could be degraded in vivo, did not cause systemic toxicity in animals, had no muscle stimulation reaction, and could promote the repair of bone defects. These results suggest that porous marine shell/cervus and cucumis polypeptide composite scaffold material has excellent mechanical properties, three-dimensional spatial structure, good cytocompatibility and histocompatibility.  

Key words: 3D printing, marine shell, cervus and cucumis polypeptide, bone repair material, biocompatibility, bone defect, osteoblast, osteoinduction

中图分类号: