中国组织工程研究 ›› 2018, Vol. 22 ›› Issue (25): 3993-4000.doi: 10.3969/j.issn.2095-4344.0922
• 干细胞移植 stem cell transplantation • 上一篇 下一篇
傅青春1,2,金银鹏1,2,王晓今1,李 莉2,王 皙1,李洪超1,汪照静3,周 丰1,臧祖胜1,施莉琴1,李震宇1,陈成伟1
修回日期:
2018-04-05
出版日期:
2018-09-08
发布日期:
2018-09-08
通讯作者:
陈成伟,解放军南京军区上海肝病研究中心,上海市 200235
作者简介:
傅青春,男,汉族,1986年第二军医大学毕业,硕士,主任医师,主要从事干细胞研究。
并列第一作者:金银鹏,男,汉族,硕士,从事干细胞研究。
基金资助:
南京军区医学创新课题(10MA001)
Fu Qing-chun1, 2, Jin Yin-peng1, 2, Wang Xiao-jin1, Li Li2, Wang Xi1, Li Hong-chao1, Wang Zhao-jing3, Zhou Feng1, Zang Zu-sheng1, Shi Li-qin1, Li Zhen-yu1, Chen Cheng-wei1
Revised:
2018-04-05
Online:
2018-09-08
Published:
2018-09-08
Contact:
Chen Cheng-wei, Shanghai Liver Disease Research Center, Nanjing Military Command, Shanghai 200235, China
About author:
Fu Qing-chun, Master, Chief physician, Shanghai Liver Disease Research Center, Nanjing Military Command, Shanghai 200235, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
Jin Yin-peng, Master, Shanghai Liver Disease Research Center, Nanjing Military Command, Shanghai 200235, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
Fu Qing-chun and Jin Yin-peng contributed equally to this work.
Supported by:
the Medical Innovation Project of Nanjing Military Command, No. 10MA001
摘要:
文章快速阅读:
文题释义: 失代偿肝硬化:肝硬化是由一种或多种病因长期、反复刺激造成肝脏弥漫性损害,其特点为慢性弥漫性结缔组织增生,肝细胞变性坏死、再生和肝小叶结构损害及假小叶形成。早期肝功能尚可代偿,肝硬化发展到一定程度,超出肝功能的代偿能力,即称为失代偿肝硬化。 脐带间充质干细胞:是指存在于新生儿脐带组织中的一种多功能干细胞,它能分化成许多种组织细胞,具有广阔应用前景。
中图分类号:
傅青春,金银鹏,王晓今,李 莉,王 皙,李洪超,汪照静,周 丰,臧祖胜,施莉琴,李震宇,陈成伟. 移植人脐带干细胞改善乙型肝炎失代偿肝硬化患者的肝功能[J]. 中国组织工程研究, 2018, 22(25): 3993-4000.
Fu Qing-chun, Jin Yin-peng, Wang Xiao-jin, Li Li, Wang Xi, Li Hong-chao, Wang Zhao-jing, Zhou Feng, Zang Zu-sheng, Shi Li-qin, Li Zhen-yu, Chen Cheng-wei. Transfusion with human umbilical cord mesenchymal stem cells improves liver function in hepatitis B patients with decompensated liver cirrhosis[J]. Chinese Journal of Tissue Engineering Research, 2018, 22(25): 3993-4000.
[1] Mast EE, Alter MJ, Margolis HS. Strategies to prevent and control hepatitis B and C virus infections: a global perspective. Vaccine. 1999;17(13-14):1730-1733.[2] Park TW, Park YM, Bae SH, et al. Efficacy and safety of long-term lamivudine therapy in the patients with decompensated liver cirrhosis secondary to hepatitis B. Taehan Kan Hakhoe Chi. 2002;8(4):428-435.[3] Krautbauer S, Rein-Fischboeck L, Haberl EM, et al. Circulating fibroblast growth factor 21 in patients with liver cirrhosis. Clin Exp Med. 2018;18(1):63-69. [4] Fraser AR, Pass C, Burgoyne P, et al. Development, functional characterization and validation of methodology for GMP-compliant manufacture of phagocytic macrophages: A novel cellular therapeutic for liver cirrhosis. Cytotherapy. 2017;19(9):1113-1124..[5] Alexopoulou A, Agiasotelli D, Vasilieva LE, et al. Bacterial translocation markers in liver cirrhosis. Ann Gastroenterol. 2017;30(5):486-497.[6] de Jongh FE, Janssen HL, de Man RA, et al. Survival and prognostic indicators in hepatitis B surface antigen-positive cirrhosis of the liver. Gastroenterology. 1992;103(5):1630-1635.[7] Mehta N, Dodge JL, Roberts JP, et al. Outcomes after liver transplantation for patients with hepatocellular carcinoma and a low risk of dropout from the transplant waiting list. Liver Transpl. 2014;20(5):627-628. [8] Takaki A, Yasunaka T, Yagi T. Molecular mechanisms to control post-transplantation hepatitis B recurrence. Int J Mol Sci. 2015;16(8):17494-17513. [9] Navarro Burgos JB, Lee KW, Shin YC, et al. Inexplicable outcome of early appearance of hepatocellular carcinoma in the allograft after deceased donor liver transplantation: a case report. Transplant Proc. 2015;47(10):3012-3015. [10] Lorenzini S, Gitto S, Grandini E, et al. Stem cells for end stage liver disease: how far have we got? World J Gastroenterol. 2008;14(29): 4593-4599.[11] Tatsumi K, Okano T. Hepatocyte transplantation: cell sheet technology for liver cell transplantation. Curr Transplant Rep. 2017;4(3):184-192. [12] Belaschk E, Rohn S, Mukiibi R, et al. Isolation, characterization and cold storage of cells isolated from diseased explanted livers. Int J Artif Organs. 2017;40(6):294-306.[13] Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 2014;60(5):1090-1096. [14] Melief SM, Schrama E, Brugman MH, et al. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells. 2013;31(9):1980-1991. [15] Eggenhofer E, Hoogduijn MJ. Mesenchymal stem cell-educated macrophages. Transplant Res. 2012;1(1):12. [16] Jones S, Horwood N, Cope A, et al. The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol. 2007;179(5):2824-2831.[17] Choi H, Lee RH, Bazhanov N, et al. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood. 2011;118(2):330-338. [18] Ortiz LA, Dutreil M, Fattman C, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A. 2007;104(26):11002-11007. [19] Bianco P. "Mesenchymal" stem cells. Annu Rev Cell Dev Biol. 2014;30:677-704.[20] Shi R, Jin Y, Cao C, et al. Localization of human adipose-derived stem cells and their effect in repair of diabetic foot ulcers in rats. Stem Cell Res Ther. 2016;7(1):155.[21] Fan CG, Zhang QJ, Zhou JR. Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev. 2011;7(1):195-207. [22] Zhang X, Li J, Ye P, et al. Coculture of mesenchymal stem cells and endothelial cells enhances host tissue integration and epidermis maturation through AKT activation in gelatin methacryloyl hydrogel-based skin model. Acta Biomater. 2017;59:317-326.[23] Wang HX, Gao XW, Ren B, et al. Comparative analysis of different feeder layers with 3T3 fibroblasts for culturing rabbits limbal stem cells. Int J Ophthalmol. 2017;10(7):1021-1027. [24] Li T, Liu Y, Yu L, et al. Human umbilical cord mesenchymal stem cells protect against SCA3 by modulating the level of 70 kD heat shock protein. Cell Mol Neurobiol. 2017. doi: 10.1007/s10571-017-0513-1.[25] Campard D, Lysy PA, Najimi M, et al. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology. 2008;134(3):833-848.[26] Li Y, Wu Q, Wang Y, et al. Construction of bioengineered hepatic tissue derived from human umbilical cord mesenchymal stem cells via aggregation culture in porcine decellularized liver scaffolds. Xenotransplantation. 2017;24(1). [27] Chen Z, Kuang Q, Lao XJ, et al. Differentiation of UC-MSCs into hepatocyte-like cells in partially hepatectomized model rats. Exp Ther Med. 2016;12(3):1775-1779. [28] Chitrangi S, Nair P, Khanna A. 3D engineered in vitro hepatospheroids for studying drug toxicity and metabolism. Toxicol In Vitro. 2017;38:8-18. [29] Gai XD, Wu WF. Effect of entecavir in the treatment of patients with hepatitis B virus-related compensated and decompensated cirrhosis. Exp Ther Med. 2017;14(4):3908-3914.[30] Peng Y, Qi X, Guo X. Child-Pugh versus MELD score for the assessment of prognosis in liver cirrhosis: a systematic review and meta-analysis of observational studies. Medicine (Baltimore). 2016;95(8):e2877. [31] Zhang C, Yin X, Zhang J, et al. Clinical observation of umbilical cord mesenchymal stem cell treatment of severe idiopathic pulmonary fibrosis: A case report. Exp Ther Med. 2017;13(5):1922-1926.[32] Chao K, Zhang S, Qiu Y, et al. Human umbilical cord-derived mesenchymal stem cells protect against experimental colitis via CD5(+) B regulatory cells. Stem Cell Res Ther. 2016;7(1):109. [33] Xu Y, Wu XN, Shi YW, et al. Baseline hepatitis B virus DNA level is a promising factor for predicting the 3 (rd) month virological response to entecavir therapy: a study of strict defined Hepatitis B virus induced cirrhosis. Chin Med J (Engl). 2015;128(14):1867-1872. [34] Guan R, Lui HF. Treatment of hepatitis B in decompensated liver cirrhosis. Int J Hepatol. 2011;2011:918017.[35] Zeng SY, Xing LY, Hou HB, et al. The clinical diagnostic value of cystatin C, creatinine, urea and uric acid levels in renal function injury was investigated. Zhongguo Yixue Chuangxin. 2011;8(10):26-27.[36] Forraz N, McGuckin CP. The umbilical cord: a rich and ethical stem cell source to advance regenerative medicine. Cell Prolif. 2011;44 Suppl 1:60-69. [37] Kim YJ, Yoo SM, Park HH, et al. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin. Biochem Biophys Res Commun. 2017;493(2):1102-1108.[38] Dehghani-Soltani S, Shojaee M, Jalalkamali M, et al. Effects of light emitting diode irradiation on neural differentiation of human umbilical cord-derived mesenchymal cells. Sci Rep. 2017;7(1):9976. [39] Dong HJ, Shang CZ, Li G, et al. The distribution of transplanted umbilical cord mesenchymal stem cells in large blood vessel of experimental design with traumatic brain injury. J Craniofac Surg. 2017;28(6):1615-1619.[40] Hassan G, Kasem I, Soukkarieh C, et al. A simple method to isolate and expand human umbilical cord derived mesenchymal stem cells: using explant method and umbilical cord blood serum. Int J Stem Cells. 2017 ;10(2):184-192. [41] Hodgkinson CP, Naidoo V, Patti KG, et al. Abi3bp is a multifunctional autocrine/paracrine factor that regulates mesenchymal stem cell biology. Stem Cells. 2013;31(8):1669-1682.[42] Alvarez-Dolado M, Martínez-Losa M. Cell fusion and tissue regeneration. Adv Exp Med Biol. 2011;713:161-175. [43] Chen W, Liu X, Chen Q, et al. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs. J Tissue Eng Regen Med. 2017. doi: 10.1002/term.2395.[44] Higashiyama R, Inagaki Y, Hong YY, et al. Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology. 2007 ;45(1):213-222.[45] Wang J, Bian C, Liao L, et al. Inhibition of hepatic stellate cells proliferation by mesenchymal stem cells and the possible mechanisms. Hepatol Res. 2009;39(12):1219-1228. [46] Shen Q, Chen B, Xiao Z, et al. Paracrine factors from mesenchymal stem cells attenuate epithelial injury and lung fibrosis. Mol Med Rep. 2015;11(4):2831-2837.[47] Houtgraaf JH, de Jong R, Kazemi K, et al. Intracoronary infusion of allogeneic mesenchymal precursor cells directly after experimental acute myocardial infarction reduces infarct size, abrogates adverse remodeling, and improves cardiac function. Circ Res. 2013;113(2):153-166.[48] Parekkadan B, van Poll D, Megeed Z, et al. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochem Biophys Res Commun. 2007;363(2):247-252.[49] Zhang Z, Lin H, Shi M, et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol. 2012;27 Suppl 2:112-120. [50] Parekkadan B, van Poll D, Suganuma K, et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One. 2007;2(9):e941.[51] Brückner S, Tautenhahn HM, Winkler S, et al. A fat option for the pig: hepatocytic differentiated mesenchymal stem cells for translational research. Exp Cell Res. 2014;321(2):267-275. [52] Chen G, Jin Y, Shi X, et al. Adipose-derived stem cell-based treatment for acute liver failure. Stem Cell Res Ther. 2015;6:40.[53] Spaeth E, Klopp A, Dembinski J, et al. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008;15(10):730-738. [54] Jung JW, Kwon M, Choi JC, et al. Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy. Yonsei Med J. 2013;54(5):1293-1296.[55] Glassberg MK, Minkiewicz J, Toonkel RL, et al. Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): a phase I safety clinical trial. Chest. 2017;151(5):971-981. |
[1] | 蒲 锐, 陈子扬, 袁凌燕. 不同细胞来源外泌体保护心脏的特点与效应[J]. 中国组织工程研究, 2021, 25(在线): 1-. |
[2] | 林清凡, 解一新, 陈婉清, 叶振忠, 陈幼芳. 人胎盘源间充质干细胞条件培养液可上调缺氧状态下BeWo细胞活力和紧密连接因子的表达[J]. 中国组织工程研究, 2021, 25(在线): 4970-4975. |
[3] | 张秀梅, 翟运开, 赵 杰, 赵 萌. 类器官模型国内外数据库近10年文献研究热点分析[J]. 中国组织工程研究, 2021, 25(8): 1249-1255. |
[4] | 侯婧瑛, 于萌蕾, 郭天柱, 龙会宝, 吴 浩. 缺氧预处理激活HIF-1α/MALAT1/VEGFA通路促进骨髓间充质干细胞生存和血管再生[J]. 中国组织工程研究, 2021, 25(7): 985-990. |
[5] | 史洋洋, 秦英飞, 吴福玲, 何 潇, 张雪静. 胎盘间充质干细胞预处理预防小鼠毛细支气管炎[J]. 中国组织工程研究, 2021, 25(7): 991-995. |
[6] | 梁学奇, 郭黎姣, 陈贺捷, 武 杰, 孙雅琪, 邢稚坤, 邹海亮, 陈雪玲, 吴向未. 泡状棘球绦虫原头蚴抑制骨髓间充质干细胞向成纤维细胞的分化[J]. 中国组织工程研究, 2021, 25(7): 996-1001. |
[7] | 樊全宝, 罗惠娜, 王丙云, 陈胜锋, 崔连旭, 江文康, 赵明明, 王静静, 罗冬章, 陈志胜, 白银山, 刘璨颖, 张 晖. 低氧培养犬脂肪间充质干细胞的生物学特性[J]. 中国组织工程研究, 2021, 25(7): 1002-1007. |
[8] | 耿 瑶, 尹志良, 李兴平, 肖东琴, 侯伟光. hsa-miRNA-223-3p调控人骨髓间充质干细胞成骨分化的作用[J]. 中国组织工程研究, 2021, 25(7): 1008-1013. |
[9] | 伦志刚, 金 晶, 王添艳, 李爱民. 过氧化物还原酶6干预骨髓间充质干细胞增殖及体外向神经谱系诱导分化[J]. 中国组织工程研究, 2021, 25(7): 1014-1018. |
[10] | 朱雪芬, 黄 成, 丁 健, 戴永平, 刘元兵, 乐礼祥, 王亮亮, 杨建东. 胶质细胞神经营养因子诱导骨髓间充质干细胞向功能性神经元分化的机制[J]. 中国组织工程研究, 2021, 25(7): 1019-1025. |
[11] | 段丽芸, 曹晓沧. 人胎盘间充质干细胞来源细胞外囊泡调节肠炎小鼠肠黏膜胶原的沉积[J]. 中国组织工程研究, 2021, 25(7): 1026-1031. |
[12] | 裴丽丽, 孙贵才, 王 弟. 丹酚酸B抑制骨髓间充质干细胞氧化损伤及促进分化为心肌样细胞[J]. 中国组织工程研究, 2021, 25(7): 1032-1036. |
[13] | 邹 刚, 徐 志, 刘子铭, 李豫皖, 杨继滨, 金 瑛, 张 骏, 葛 振, 刘 毅. 人脱细胞羊膜支架促进Scleraxis修饰人羊膜间充质干细胞体外成韧带分化[J]. 中国组织工程研究, 2021, 25(7): 1037-1044. |
[14] | 管 倩, 栾 佐, 叶 豆, 杨印祥, 汪兆艳, 王 倩, 姚瑞芹. 人少突胶质前体细胞传代过程中形态学的变化[J]. 中国组织工程研究, 2021, 25(7): 1045-1049. |
[15] | 王正东, 黄 娜, 陈婧娴, 郑作兵, 胡鑫宇, 李 梅, 苏 晓, 苏学森, 颜 南. 丁酸钠抑制氟中毒可诱导小胶质细胞活化及炎症因子表达增多[J]. 中国组织工程研究, 2021, 25(7): 1075-1080. |
Following treatment with hUC-MSCs, the quality of life, clinical symptoms and any signs of change were monitored in all patients. Follow-up assessments were made at 1, 4, 12, 24, 36 and 48 weeks after treatment. The presence of HBV DNA in the serum usually indicates continuing viral replication[33]. The degree of HBV infection was determined by measuring the viral load — specifically the quantification of HBV DNA in the serum of participants. As a measure of successful disease management, we monitored that the antiviral length of time that HBV DNA levels were undetectable in the patient serum[33]. The course of DLC can be monitored by measuring certain blood parameters; the serum levels of albumin (Alb), prealbumin (PAB), total bilirubin (TB), direct bilirubin (DB), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), alkaline phosphatase (AKP), γ-glutamyltransferase (γ-GT), creatine phosphate kinase (CPK), prothrombin time (PT), creatinine (Cr) and activated partial thromboplastin time (APTT) were measured using an ELISA kit (Sigma, Santa Louis, MO, USA). The Child-Pugh and MELD scores were measured to assess the severity of the cirrhosis and to monitor any adverse reactions. These scores were determined as previously described[34].
Statistical analysis was performed using SPSS 13.0 for Windows software (SPSS, Chicago, IL, USA). All data are presented as the mean±SD. The baseline characteristics (sex, Child-Pugh score, phase of DCL, viral load, antiviral length and ascites) were compared between groups using the Pearson chi-square test. Baseline laboratory tests were compared between groups using the independent samples t-test. The liver function, blood coagulation function and renal function was detected by biochemical tests, such as Alb, PAB, TB, LDH, AKP, ALT, γ-GT, CPK, PT, APTT and Cr. The Child-Pugh and MELD scores were calculated with respective corresponding scale. Data were compared before and after treatment using the t-test. Comparison of data between groups after treatment was performed using the Mann-Whitney U test. A value of P < 0.05 was inferred statistically significant.
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
间充质干细胞移植患者肝功能有所改善,白蛋白、胆红素、乳酸脱氢酶及碱性磷酸酶水平有所恢复,且患者Child-Pugh及MELD评分明显恢复。表明人脐带间充质干细胞静脉注射入乙肝肝硬化失代偿患者体内可改善肝功能。 中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||