中国组织工程研究 ›› 2017, Vol. 21 ›› Issue (26): 4160-4166.doi: 10.3969/j.issn.2095-4344.2017.26.011

• 纳米生物材料 nanobiomaterials • 上一篇    下一篇

腰椎椎体间植入丝素蛋白/纳米羟基磷灰石复合材料后的初始稳定性

邓必权,滕  宇,胡  华,李  舰,江红辉,张卫国
  

  1. 华中科技大学同济医学院附属武汉中心医院脊柱外科,湖北省武汉市  430000
  • 收稿日期:2017-04-12 出版日期:2017-09-18 发布日期:2017-09-28
  • 作者简介:邓必权,男,1974年生,湖北省武汉市人,汉族,博士,主治医师,主要从事脊柱外科方面的研究。
  • 基金资助:
    湖北省自然科学基金(2014CFB459)

Silk fibroin/nano-hydroxyapatite composite material as a lumbar interbody implant: a study on initial segmental stability

Deng Bi-quan, Teng Yu, Hu Hua, Li Jian, Jiang Hong-hui, Zhang Wei-guo
  

  1. Department of Spine Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
  • Received:2017-04-12 Online:2017-09-18 Published:2017-09-28
  • About author:Deng Bi-quan, M.D., Attending physician, Department of Spine Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
  • Supported by:
    the Natural Science Foundation of Hubei Province in 2014, No. 2014CFB459

摘要:

文章快速阅读:

 

文题释义:
脊柱融合材料:医学界多采用医学金属材料、高分子材料、医用陶瓷材料,其中金属材料强度较高,具有耐腐蚀性、耐磨性等优点,常用于脊柱融合术,然而由于其远期移植效果差,术后不便于进行影像学观察而受到限制;高分子有机化合物是另一类可降解的高分子生物材料,因具有良好的机械强度、可控性、生物相容性及降解性,但该类材料机械强度低,难以满足骨组织修复的硬度要求;与此同时,医用生物陶瓷材料进入公众视野,羟基磷灰石就是其中之一。羟基磷灰石的理化性质与骨骼、牙齿等硬组织类似,具有良好生物相容性,但因其脆性大、可塑性差、降解慢等缺点,临床应用具有一定局限。
兔腰椎融合模型:研究表明,与大动物模型相比,小动物模型更能够获得丰富的实验数据和信息,因此更具有参考价值。以往常选择鼠和犬,然而研究发现鼠的腰椎太小,与研究使用的复合材料不相符,而犬的脊柱融合过程与人有着明显区别,均不是最佳的动物模型。经过反复筛选,把目标锁定到兔。兔的腰椎解剖与人类最相似且体积小,便于操作,能为移植物提供足够空间,其动物模型被大量应用于脊柱融合研究,且术后此类动物创伤小、恢复快、周期短、植骨融合率高,因此兔是制备脊柱失稳模型最佳选择。
 
背景:随着纳米技术的发展,将丝素蛋白/纳米羟基磷灰石复合材料用于组织修复的报道开始出现,但鲜见将其用于脊柱稳定性的报道。
目的:探究丝素蛋白/纳米羟基磷灰石复合材料重建脊柱节段初始稳定性的可行性。
方法:将36只新西兰兔按随机数字表法分为3组,均摘除 L4/5椎间盘髓核,自体骨组在椎间植入自体骨,实验组植入丝素蛋白/纳米羟基磷灰石复合材料,对照组植入羟基磷灰石。植入后12周,采用X射线观察手术节段融合情况,通过生物力学测试检测融合节段的稳定性,组织学观察手术部位植骨融合情况及材料降解情况。
结果与结论:①X射线观察:自体骨组、实验组及对照组分别有11,7,2只符合融合标准;②生物力学测试:实验组前屈及后伸脊柱活动度明显低于自体骨组和对照组(P < 0.05);③组织学观察:自体骨组髂骨和周边组织分界处可见骨性连接,新骨周边可见大量骨母细胞、纤维母细胞,内部见编织骨;实验组材料部分降解,其周边可见纤维组织,内部有新生编织骨,陷窝细胞和骨细胞散在分布;对照组材料周边可见血管增生,材料内部有大量巨噬细胞;④结果表明:丝素蛋白/纳米羟基磷灰石复合材料具有良好的生物相容性和力学性能,短期内重建了兔脊柱节段初始稳定性。

关键词: 生物材料, 骨生物材料, 丝素蛋白, 纳米, 羟基磷灰石, 脊柱节段失稳, 兔, 湖北省自然科学基金

Abstract:

BACKGROUND: With the development of nanotechnology, silk fibroin/nano-hydroxyapatite composite materials used for tissue repair have been reported; however, there are few reports on its use in spinal stability.
OBJECTIVE: To explore the feasibility of silk fibroin/nano-hydroxyapatite composite materials for the initial segmental stability of the reconstructed spine.
METHODS: Thirty-six New Zealand rabbits were randomly divided into three groups, and the L4/5 nucleus pulposus was removed in all the animals. Autologous bone group was implanted with autologous bone, experimental group implanted intervertebrally with silk fibroin/nano-hydroxyapatite composite material, and control group implanted with hydroxyapatite. At 12 weeks after implantation, lumbar interbody fusion was observed using X-ray, the spinal stability of the fusion segments was measured by biomechanical test, and histologically, bone graft fusion and material degradation at the surgical site were observed.
RESULTS AND CONCLUSION: (1) X-ray observation: In the autologous bone group, the experimental group and the control group, there were respectively 11, 7, 2 rabbits meeting the standard of fusion. (2) Biomechanical test: The spinal activity during flexion-extension was significantly lower in the experimental group than the autogenous bone group and control group (P < 0.05). (3) Histological observation: Bony union was found at the junction between the iliac bone and surrounding tissues in the autologous bone group, and a large number of bone cells and fibroblasts were found around the new bone, while woven bone was found inside. The material was partially degraded in the experimental group, fibrous tissues were visible in the surrounding tissue, new woven bone was found inside, and pit cells and bone cells were scattered. Blood vessel growth around the material was visible in the control group, and a large number of macrophages were found inside the material. To conclude, the silk fibroin/nano-hydroxyapatite composite material has good biocompatibility and mechanical properties, which could rebuild the initial segmental stability in the rabbit spine in the short time.

Key words: Silk, Hydroxyapatites, Spinal Fusion, Tissue Engineering

中图分类号: