[1]Hutmacher DW.Scaffols in tissue engineering bone and cartilage.Biomaterials.2000; 21(24):2529-2543.
[2]Gentile P,Chiono V,Carmagnola I,et al.An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering.Int J Mol Sci.2014;15(3): 3640-3659.
[3]Danhier F,Ansorena E,Silva JM,et al.PLGA-based nanoparticles: an overview of biomedical applications.J Control Release.2012;161(2):505-522.
[4]Zolnik BS,Burgess DJ.Effect of acidic pH on PLGA microsphere degradation and release. J Control Release. 2007;122(3):338-344.
[5]Liu H,Slamovich EB,Webster TJ.Less harmful acidic degradation of poly(lactic-co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition.Int J Nanomedicine.2006;1(4):541-545.
[6]Cheng D,Cao X,Gao H,et al.Superficially porous poly (lactic-co-glycolic acid)/calcium carbonate microsphere developed by spontaneous pore-forming method for bone repair.RSC Adv.2013;3(19):6871-6878.
[7]Ege D,Cameron R,Best S.The degradation behavior of nanoscale HA/PLGA and alpha-TCP/PLGA composites. Bioinspir Biomim Nan.2014;3(2):85-93.
[8]Cao J,Shi S,Geng H,et al.Neutralizing ability of bioactive glass (BG) on the PLGA microsphere degradation.Lat Am J Pharm.2015;34(3):468-473.
[9]Lynn A,Nakamura T,Patel N,et al. Composition- controlled nanocomposites of apatite and collagen incorporating silicon as an osseopromotive agent.J Biomed Mater Res A. 2005;74(3):447-453.
[10]Liu X,Ding C,Chu PK.Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials.2004;25(10):1755-1761.
[11]Lin K,Zhai W,Ni S,et al.Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics.Ceram Int.2005;31(2):323-326.
[12]Xue W,Liu X,Zheng X,et al.In vivo evaluation of plasma-sprayed wollastonite coating. Biomaterials. 2005;26(17):3455-3460.
[13]Wu C,Chang J.A review of bioactive silicate ceramics. Biomed Mater.2013, 8(3):032001.
[14]Shirazi FS,Mehrali M,Oshkour AA,et al.Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications.J Mech Behav Biomed Mater.2014;30:168-175.
[15]Nam YS,Park TG.Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation.J Biomed Mater Res.1999;47(1): 8-17.
[16]Cai Q,Yang J,Bei J,et al. A novel porous cells scaffold made of polylactide-dextran blend by combining phase-separation and particle-leaching techniques. Biomaterials. 2002;23(23):4483-4492.
[17]Bose S,Vahabzadeh S,Bandyopadhyay A.Bone tissue engineering using 3D printing. Mater Today. 2013; 16(12):496-504.
[18]Cox SC,Thornby JA,Gibbons GJ,et al.3D printing of porous hydroxyapatite scafolds intended for use in bone tissue engineering applications.Mater Sci Eng C Mater Biol Appl.2015;47:237-247.
[19]Castilho M,Rodrigues J,Pires I,et al.Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication. 2015;7(1):015004.
[20]Tarafder S,Balla VK,Davies NM,et al. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineerig.J Tissue Eng Regen Med.2013;7(8):631-641.
[21]Inzana JA,Olvera D,Fuller SM,et al.3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.Biomaterials. 2014;35(13):4026-4034.
[22]Wu C,Fan W,Zhou Y,et al.3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis.J Mater Chem.2012;22(24):12288-12295.
[23]Xu WK,Wang LY,Ling Y,et al.Enhancement of compressive strength and cytocompatibility using apatite coated hexagonal mesoporous silica/poly(lactic acid-glycolic acid) microsphere scaffolds for bone tissue engineering.Rsc Adv.2014; 4(26):13495-13501.
[24]法默.矿物的红外光谱[M]. 应育浦,汪寿松,李春庚,等译.北京:科学出版社,1982.
[25]方敏.纳米CaSiO3 发光材料的性能及特殊形貌研究[D].上海师范大学,2007.
[26]袁曦明,石岚,何应律,等.人工合成硅灰石的发光性质与发光机理的初步研究[J].地球科学: 中国地质大学学报, 1994,19(2):175-180.
[27]Quelch KJ,Melick R,Bingham PJ,et al.Chemical composition of human bone.Arch Oral Biol. 1983; 28(8):665-674. |