中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (3): 671-679.doi: 10.12307/2026.012
• 骨与关节综述 bone and joint review • 上一篇 下一篇
王正业,刘万林,赵振群
收稿日期:
2024-11-21
接受日期:
2025-02-15
出版日期:
2026-01-28
发布日期:
2025-07-05
通讯作者:
刘万林,硕士,教授,内蒙古医科大学第二附属医院儿童骨科医学中心,内蒙古自治区呼和浩特市 010090
共同通讯作者:赵振群,博士,教授,内蒙古医科大学第二附属医院儿童骨科医学中心,内蒙古自治区呼和浩特市 010090
作者简介:
王正业,男,1997年生,内蒙古自治区准格尔旗人,汉族,在读硕士,主要从事髋关节的相关研究。
基金资助:
Wang Zhengye, Liu Wanlin, Zhao Zhenqun
Received:
2024-11-21
Accepted:
2025-02-15
Online:
2026-01-28
Published:
2025-07-05
Contact:
Liu Wanlin, MS, Professor, Children's Orthopedic Medical Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010090, Inner Mongolia Autonomous Region, China
Co-corresponding author: Zhao Zhenqun, MD, Professor, Children's Orthopedic Medical Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010090, Inner Mongolia Autonomous Region, China
About author:
Wang Zhengye, Master candidate, Children's Orthopedic Medical Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010090, Inner Mongolia Autonomous Region, China
Supported by:
摘要:
文题释义:
激素诱导的股骨头坏死:其特征是股骨头血供中断和软骨下骨坏死,导致关节功能障碍。长期使用糖皮质激素是其主要诱因,病理机制涉及多个因素,包括血管内凝血和骨细胞凋亡等。
中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程
中图分类号:
王正业, 刘万林, 赵振群. 血管内皮生长因子A 靶向调控血管化治疗激素性股骨头坏死的机制[J]. 中国组织工程研究, 2026, 30(3): 671-679.
Wang Zhengye, Liu Wanlin, Zhao Zhenqun. Mechanism by which vascular endothelial growth factor A targets regulation of angiogenesis in the treatment of steroid-induced osteonecrosis of the femoral head[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(3): 671-679.
[1] 内蒙古医科大学第二附属医院. 糖皮质激素诱导缺氧状态及程序性细胞死亡在股骨头坏死中调控机制[Z]. 2023 [2] 张煦坚, 赵振群, 刘万林. 激素性股骨头缺血坏死发病机制中的内质网应激[J]. 中国组织工程研究,2021,25(11):1759-1765. [3] 赵千增, 赵振群, 刘万林. 激素性股骨头缺血坏死过程中内质网应激调控自噬与凋亡的作用[J]. 中国组织工程研究,2021,25(29):4685-4690. [4] 刘万林, 郝廷, 冯卫, 等. 家兔激素性股骨头缺血坏死血管壁中差异表达基因的研究[J]. 中华创伤骨科杂志,2008,10(11):1058-1061. [5] YANG H S, YAU W W, CARLYLE B C, et al. Plasma VEGFA and PGF impact longitudinal tau and cognition in preclinical Alzheimer’s disease. Brain. 2024;147(6):2158-2168. [6] 冯卫, 刘万林, 苏秀兰, 等. 激素性股骨头缺血坏死与血管壁中主要促血管生长因子生理活性关系的实验研究[J]. 中华创伤骨科杂志,2008, 10(10):960-964. [7] 郝廷, 刘万林, 苏秀兰. 血管内皮生长因子与激素性股骨头坏死关系的研究进展[J]. 临床医学工程,2009,16(1):85-87. [8] ZHOU Y, ZHU X, CUI H, et al. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med. 2021;8:738325. [9] APTE RS, CHEN DS, FERRARA N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248-1264. [10] RIBATTI D. The contribution of Harold F. Dvorak to the study of tumor angiogenesis and stroma generation mechanisms. Endothelium. 2007; 14(3):131-135. [11] PANIGRAHY D, SINGER S, SHEN LQ, et al. PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest. 2002;110(7):923-932. [12] RAHBAR R, VARGAS SO, FOLKMAN J, et al. Role of vascular endothelial growth factor-A in recurrent respiratory papillomatosis. Ann Otol Rhinol Laryngol. 2005;114(4):289-295. [13] SAHAY G, QUERBES W, ALABI C, et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol.2013;131(7): 653-658. [14] SA-NGUANRAKSA D, O-CHAROENRAT P. The role of vascular endothelial growth factor a polymorphisms in breast cancer. Int J Mol Sci. 2012;13(11):14845-14864. [15] UEMURA A, FRUTTIGER M, D’AMORE PA, et al. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res. 2021;84: 100954. [16] ZHAO Y, GUO S, DENG J, et al. VEGF/VEGFR-Targeted Therapy and Immunotherapy in Non-small Cell Lung Cancer: Targeting the Tumor Microenvironment. Int J Biol Sci. 2022;18(9): 3845-3858. [17] WANG HJ, RAN HF, YIN Y, et al. Catalpol improves impaired neurovascular unit in ischemic stroke rats via enhancing VEGF-PI3K/AKT and VEGF-MEK1/2/ERK1/2 signaling. Acta Pharmacol Sin. 2022;43(7): 1670-1685. [18] LIANG N, LI Y, CHUNG HY. Two natural eudesmane-type sesquiterpenes from Laggera alata inhibit angiogenesis and suppress breast cancer cell migration through VEGF- and Angiopoietin 2-mediated signaling pathways. Int J Oncol. 2017; 51(1):213-222. [19] CHATTERJEE S, PATRA D, GHOSH P, et al. Activity of ROCKII not ROCKI promotes pulmonary metastasis of melanoma cells via modulating Smad2/3-MMP9 and FAK-Src-VEGF signalling. Cell Signal. 2022;97: 110389. [20] LEUNG DW, CACHIANES G, KUANG WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935): 1306-1309. [21] WATARI K, SHIBATA T, FUJITA H, et al. NDRG1 activates VEGF-A-induced angiogenesis through PLCγ1/ERK signaling in mouse vascular endothelial cells. Commun Biol. 2020;3(1):107. [22] FARZANEH BEHELGARDI M, ZAHRI S, GHOLAMI SHAHVIR Z, et al. Targeting signaling pathways of VEGFR1 and VEGFR2 as a potential target in the treatment of breast cancer. Mol Biol Rep. 2020;47(3):2061-2071. [23] FEARNLEY GW, BRUNS AF, WHEATCROFT SB, et al. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration. Biol Open. 2015;4(6):731-742. [24] WANG XY, MA TL, CHEN KN, et al. Accumulation of LDL/ox-LDL in the necrotic region participates in osteonecrosis of the femoral head: a pathological and in vitro study. Lipids Health Dis. 2021;20(1): 167. [25] 鱼铁羲. 血栓形成倾向在非创伤性股骨头坏死发生中的研究进展[J]. 临床骨科杂志,2021, 24(5):756-760. [26] MA L, FENG X, WANG K, et al. Dexamethasone promotes mesenchymal stem cell apoptosis and inhibits osteogenesis by disrupting mitochondrial dynamics. FEBS Open Bio. 2020;10(2):211-220. [27] TAO SC, YUAN T, RUI BY, et al. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics. 2017;7(3):733-750. [28] DUAN P, WANG H, YI X, et al. C/EBPα regulates the fate of bone marrow mesenchymal stem cells and steroid-induced avascular necrosis of the femoral head by targeting the PPARγ signalling pathway. Stem Cell Res Ther. 2022;13(1):342. [29] JING J, ZHONG X, LIU BC, et al. [Research progress of vascular endothelial growth factor-A and its isoforms in kidney disease]. Sheng li xue bao. 2022;74(1):59-66. [30] 贾岩波, 刘万林, 任逸众. 激素性股骨头坏死发病机制中细胞凋亡的研究进展[J]. 中国组织工程研究,2012,16(13):2444-2450. [31] 赵振群, 张志峰, 刘万林, 等. 激素性股骨头坏死过程中低氧诱导因子1α与骨细胞凋亡[J]. 中国组织工程研究,2015,19(51):8201-8207. [32] MA J, REN Y, WANG B, et al. [Progress of developmental mechanism of subtype H vessels in osteonecrosis of the femoral head]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2021;35(11): 1486-1491. [33] 特列克·坎扎勒, 叶尔扎提·哈加合曼, 金格勒. 组织工程骨血管化研究进展[J]. 中国科技论文在线精品论文,2017,10(11):1189-1195. [34] 白志刚, 刘万林, 苏秀兰, 等. VEGFmRNA与BMP-2在非创伤性股骨头坏死中表达的研究[J]. 中国矫形外科杂志,2009, 17(3):224-227. [35] FENG W, TU X. All-trans retinoic acid and vascular endothelial growth factor induced the directional osteogenic differentiation of mouse embryonic fibroblasts. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2020;34(2):246-255. [36] MONTI F, PERAZZA F, LEONI L, et al. RANK-RANKL-OPG Axis in MASLD: Current Evidence Linking Bone and Liver Diseases and Future Perspectives. Int J Mol Sci. 2024;25(17):9193. [37] STUANI AS, SILVANO P, ARNEZ MFM, et al. VEGF and FGF-2 Released In Palatal Suture after Rapid Maxillary Expansion (RME). Braz Dent J. 2021;32(1):98-103. [38] WU J, CAI P, LU Z, et al. Identification of potential specific biomarkers and key signaling pathways between osteogenic and adipogenic differentiation of hBMSCs for osteoporosis therapy. J Orthop Surg Res. 2020;15(1):437. [39] KUSUYAMA J, BANDOW K, SHAMOTO M, et al. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. J Biol Chem. 2014;289(15):10330-10344. [40] ZHAO SJ, KONG FQ, JIE J, et al. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway. Theranostics. 2020; 10(1):17-35. [41] SONG S, ZHANG G, CHEN X, et al. HIF-1α increases the osteogenic capacity of ADSCs by coupling angiogenesis and osteogenesis via the HIF-1α/VEGF/AKT/mTOR signaling pathway. J Nanobiotechnology. 2023;21(1):257. [42] XU Y, JIANG Y, WANG Y, et al. LINC00473 rescues human bone marrow mesenchymal stem cells from apoptosis induced by dexamethasone through the PEBP1mediated Akt/Bad/Bcl2 signaling pathway. Int J Mol Med. 2021;47(1): 171-182. [43] BURGER MG, GROSSO A, BRIQUEZ PS, et al. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta Biomater. 2022;149:111-125. [44] LIN M, YANG J, YAN W, et al. [Research progress of tissue engineering technology in promoting revascularization of necrotic femoral bone tissue]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2021; 35(11):1479-1485. [45] HUANG C, SHI S, QIN M, et al. A Composite Hydrogel Functionalized by Borosilicate Bioactive Glasses and VEGF for Critical-Size Bone Regeneration. Adv Sci (Weinh). 2024;11(26): e2400349. [46] 贾月欣, 杨光路. 血管内皮生长因子(VEGF)与神经系统疾病相关性研究进展[J]. 世界最新医学信息文摘(连续型电子期刊),2020,20(32): 130-131. [47] XU L, XIANG W, YANG J, et al. PHB2 promotes SHIP2 ubiquitination via the E3 ligase NEDD4 to regulate AKT signaling in gastric cancer. J Exp Clin Cancer Res. 2024;43(1):17. [48] THAPA N, CHEN M, HORN HT, et al. Phosphatidylinositol-3-OH kinase signalling is spatially organized at endosomal compartments by microtubule-associated protein 4. Nat Cell Biol. 2020;22(11):1357-1370. [49] HANG X, ZHAO L, WU B, et al. BCL-2 isoform β promotes angiogenesis by TRiC-mediated upregulation of VEGF-A in lymphoma. Oncogene. 2022;41(28):3655-3663. [50] LUO X, ZHAO M, LIU S, et al. Effect of Oroxylum indicum on hepatocellular carcinoma via the P53 and VEGF pathways based on microfluidic chips. BMC Complement Med Ther. 2023;23(1):400. [51] LI J, MA A, LAN W, et al. Platycodon D-induced A549 Cell Apoptosis through RRM1-Regulated p53/VEGF/ MMP2 Pathway. Anticancer Agents Med Chem. 2022;22(13):2458-2467. [52] TANG H, ZHANG S, HUANG C, et al. MiR-448-5p/VEGFA Axis Protects Cardiomyocytes from Hypoxia Through Regulating the FAS/FAS-L Signaling Pathway. Int Heart J. 2021;62(3): 647-657. [53] YANG HB, KIM HY, KIM SH, et al. Suppressive role of vascular endothelial growth factor on intestinal apoptosis in induced necrotizing enterocolitis in rats. Ann Surg Treat Res. 2023;105(3):157-164. [54] YANG Z, MO X, GONG Q, et al. Critical effect of VEGF in the process of endothelial cell apoptosis induced by high glucose. Apoptosis. 2008;13(11): 1331-1343. [55] 龚瑜林, 李云隆, 刘万林, 等. mTOR短发卡RNA靶向调控血管内皮细胞自噬在激素性股骨头坏死中作用机制[J]. 中华实验外科杂志, 2021,38(7):1234-1237. [56] ZHOU Y, ZHU X, WANG H, et al. The Role of VEGF Family in Lipid Metabolism. Curr Pharm Biotechnol. 2023;24(2):253-265. [57] DONG J, LI M, PENG R, et al. ACACA reduces lipid accumulation through dual regulation of lipid metabolism and mitochondrial function via AMPK- PPARα- CPT1A axis. J Transl Med. 2024; 22(1):196. [58] LU Y, WEI X, CHEN M, et al. Non-ceruloplasmin-bound copper and copper speciation in serum with extraction using functionalized dendritic silica spheres followed by ICP-MS detection. Anal Chim Acta. 2023;1251:340993. [59] CUSI K, ALKHOURI N, HARRISON SA, et al. Efficacy and safety of PXL770, a direct AMP kinase activator, for the treatment of non-alcoholic fatty liver disease (STAMP-NAFLD): a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Gastroenterol Hepatol. 2021;6(11): 889-902. [60] ZHOU W, LIU K, ZENG L, et al. Targeting VEGF-A/VEGFR2 Y949 Signaling-Mediated Vascular Permeability Alleviates Hypoxic Pulmonary Hypertension. Circulation. 2022;146(24): 1855-1881. [61] WU X, ZHAO Y, TANG C, et al. Re-Endothelialization Study on Endovascular Stents Seeded by Endothelial Cells through Up- or Downregulation of VEGF. ACS Appl Mater Interfaces. 2016;8(11): 7578-7589. [62] STONE OA, CARTER JG, LIN PC, et al. Differential regulation of blood flow-induced neovascularization and mural cell recruitment by vascular endothelial growth factor and angiopoietin signalling. J Physiol. 2017;595(5): 1575-1591. [63] LV N, ZHOU Z, HOU M, et al. Research progress of vascularization strategies of tissue-engineered bone. Front Bioeng Biotechnol. 2023;11: 1291969. [64] ZHA W, WANG J, GUO Z, et al. Efficient delivery of VEGF-A mRNA for promoting diabetic wound healing via ionizable lipid nanoparticles. Int J Pharm. 2023;632:122565. [65] TIAN Y, ZHANG F, QIU Y, et al. Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells. Nat Biomed Eng. 2021;5(9): 968-982. [66] SAWAMIPHAK S, SEIDEL S, ESSMANN CL, et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature. 2010;465(7297):487-491. [67] CHINNICI CM, IANNOLO G, CITTADINI E, et al. Extracellular Vesicle-Derived microRNAs of Human Wharton’s Jelly Mesenchymal Stromal Cells May Activate Endogenous VEGF-A to Promote Angiogenesis. Int J Mol Sci. 2021;22(4):2045. [68] TREPS L, PERRET R, EDMOND S, et al. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J Extracell Vesicles. 2017;6(1):1359479. [69] 刘保一, 杨磊, 王本杰, 等. 激素性股骨头坏死的预防与内科治疗的长期临床随访观察[J]. 中华医学杂志,2017,97(41):3213-3218. [70] MONT MA, SALEM HS, PIUZZI NS, et al. Nontraumatic Osteonecrosis of the Femoral Head: Where Do We Stand Today? A 5-Year Update. J Bone Joint Surg Am. 2020;102(12):1084-1099. [71] ZHAO Y, CHEN G, CHEN J, et al. AK112, a novel PD-1/VEGF bispecific antibody, in combination with chemotherapy in patients with advanced non-small cell lung cancer (NSCLC): an open-label, multicenter, phase II trial. E Clin Med. 2023; 62:102106. |
[1] | 王正业, 刘万林, 赵振群. miRNA在激素诱导股骨头坏死机制中的研究进展[J]. 中国组织工程研究, 2026, 30(5): 1207-1214. |
[2] | 杨 肖, 白月辉, 赵甜甜, 王东昊, 赵 琛, 袁 硕. 颞下颌关节骨关节炎软骨退变:机制及再生的挑战[J]. 中国组织工程研究, 2026, 30(4): 926-935. |
[3] | 杨 虎, 郑 宇, 贾承明, 王 通, 张广飞, 纪垚垚. 免疫微环境调节骨再生[J]. 中国组织工程研究, 2026, 30(3): 701-710. |
[4] | 卢永恒, 朱 双, 赵飞艳, 艾福军, 刘艳洁, 董阳婷, 官志忠, 魏 娜. 氟暴露对原代神经细胞内质网-线粒体钙转移及细胞凋亡的影响[J]. 中国组织工程研究, 2026, 30(1): 111-119. |
[5] | 吴芷菁, 李加利, 张佳昕, 王唐蓉, 郑煜洲, 孙梓暄. α-酮戊二酸工程化小细胞外囊泡延缓皮肤衰老[J]. 中国组织工程研究, 2026, 30(1): 120-129. |
[6] | 徐海超, 罗丽花, 潘乙怀. 牙髓干细胞及衍生产物在牙髓再生中的应用与进展[J]. 中国组织工程研究, 2026, 30(1): 153-162. |
[7] | 刘 宇, 龚森怡, 杨丽华, 李伟风, 胡玉雯, 闫钦彪, 郭美锦. 间充质干细胞来源外泌体分离、鉴定技术及应用[J]. 中国组织工程研究, 2026, 30(1): 194-203. |
[8] | 尹 路, 蒋川锋, 陈俊杰, 易 明, 王子赫, 石厚银, 汪国友, 沈骅睿. 沙苑子苷A对关节软骨细胞凋亡的影响[J]. 中国组织工程研究, 2025, 29(8): 1541-1547. |
[9] | 万玲玲, 吴梦滢, 张宇骄, 罗青清. 炎性因子干扰素γ以焦亡途径影响人血管平滑肌细胞的迁移和凋亡[J]. 中国组织工程研究, 2025, 29(7): 1422-1428. |
[10] | 李佳林, 张耀东, 娄艳茹, 于 洋, 杨 蕊. 间充质干细胞分泌组发挥作用的分子机制[J]. 中国组织工程研究, 2025, 29(7): 1512-1522. |
[11] | 贺光辉, 原 杰, 柯燕琴, 丘小婷, 张晓玲. Hemin调控小鼠软骨细胞氧化应激的线粒体途径[J]. 中国组织工程研究, 2025, 29(6): 1183-1191. |
[12] | 何 波, 陈 文, 马岁录, 何志军, 宋 渊, 李金鹏, 刘 涛, 魏晓涛, 王威威, 谢 婧. 皮瓣缺血再灌注损伤的发病机制及治疗进展[J]. 中国组织工程研究, 2025, 29(6): 1230-1238. |
[13] | 兰双笠, 向飞帆, 邓光慧, 肖喻琨, 阳运康, 梁 杰. 柚皮苷抑制骨质疏松大鼠骨组织的铁沉积及细胞凋亡[J]. 中国组织工程研究, 2025, 29(5): 888-898. |
[14] | 张熊劲夫, 陈奕达, 程歆怡, 刘岱珲, 施 勤. 年轻大鼠骨髓间充质干细胞来源外泌体逆转老龄大鼠骨髓间充质干细胞衰老[J]. 中国组织工程研究, 2025, 29(36): 7709-7718. |
[15] | 周 洋, 刘可鑫, 王得利, 孙 璋. 工程化细胞外囊泡修复骨缺损的再生作用[J]. 中国组织工程研究, 2025, 29(36): 7839-7847. |
1.1.8 检索文献量 初步检索得到文献
1.4 数据的提取 研究文献由相互独立的3人提取并通过小组多次讨论解决分歧。信息记录侧重于VEGF-A靶向调控血管化治疗激素性股骨头坏死的机制方面的最新研究进展。
文题释义:
激素诱导的股骨头坏死:其特征是股骨头血供中断和软骨下骨坏死,导致关节功能障碍。长期使用糖皮质激素是其主要诱因,病理机制涉及多个因素,包括血管内凝血和骨细胞凋亡等。
这篇关于VEGF-A在激素性股骨头坏死治疗中作用机制的文章,具有以下几个显著特点和重要意义。首先,文章从多角度深入分析了VEGF-A在促进血管生成、抗凋亡、调节脂质代谢以及促进骨髓间充质干细胞成骨分化中的作用,这种全面性为理解VEGF-A在激素性股骨头坏死中的复杂作用机制提供了坚实的基础。其次,文章通过系统性综述,整合了来自多个数据库的文献资源,为读者提供了一个全面的VEGF-A研究视角,这不仅对基础科研人员有所启发,也对临床医生在制定治疗方案时具有指导价值。文章的创新之处在于,它不仅讨论了VEGF-A的传统作用,还介绍了VEGF-A蛋白递送系统的新进展,包括脂质纳米粒和基于外泌体的递送系统,这些新型递送系统的开发为VEGF-A的临床应用提供了新的可能性。此外,文章提出的VEGF-A与其他治疗策略联合应用的潜力,可能为提高激素性股骨头坏死的治疗效果提供新的途径。总体而言,这篇文章在VEGF-A与激素性股骨头坏死的研究领域提供了新的见解,随着对VEGF-A作用机制的进一步阐明和递送技术的不断进步,期待这些研究成果能够转化为改善激素性股骨头坏死患者预后的临床应用,这不仅对科研领域有重要贡献,也对临床治疗具有深远影响。#br#
#br#
中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程#br#
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||