[1] JOHNELL O, KANIS JA. An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporosis Int. 2004;15(11):897-902.
[2] DYER SM, MARIA C, NICOLA F, et al. A critical review of the long-term disability outcomes following hip fracture. J Innovation Aging. 2017; 17(1):158.
[3] COOPER C, MELTON LJ, CUMMINGS SR, et al. Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int. 2011;22(5):1277-1288.
[4] SCHNELL S, FRIEDMAN SM, MENDELSON DA, et al. The 1-year mortality of patients treated in a hip fracture program for elders. Geriatr Orthop Surg Rehabil. 2010;1(1):6-14.
[5] FUGGLE NR, CURTIS EM, WARD KA, et al. Fracture prediction, imaging and screening in osteoporosis. Nat Rev Endocrinol. 2019;15(9):535-547.
[6] CAULEY JA, CHALHOUB D, KASSEM AM, et al. Geographic and ethnic disparities in osteoporotic fractures. Nat Rev Endocrinol. 2014;10(6):338-351.
[7] SÖZEN T, ÖZIŞIK L, BAŞARAN NÇ. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46-56.
[8] SVERRE AIL, HANNA CW, ROMKE VB, et al. Evaluation of quality of life after nonoperative or operative management of proximal femoral fractures in frail institutionalized patients: the FRAIL-HIP study. JAMA Surg. 2022;157(5):424-434.
[9] ALVARO LH, ESPERANZA MGC, MARINA LP, et al. Mechanical complications of proximal femur fractures treated with intramedullary nailing: a retrospective study. Medicina. 2024;60(5):718.
[10] 李毅中,庄华烽,林金矿,等. 年龄对股骨颈骨密度和皮质厚度的影响[J].中国骨质疏松杂志,2012,18(2):143-145.
[11] COMPSTON J, COOPER A, COOPER C, et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 2017;12(1):43.
[12] SIRIS ES, ADLER R, BILEZIKIAN J, et al. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporosis international. 2014;25(5):1439-1443.
[13] GENANT HK, ENGELKE K, PREVRHAL S. Advanced CT bone imaging in osteoporosis. Rheumatology (Oxford). 2008;47(4):9-16.
[14] GENANT HK, CANN CE, ETTINGER B, et al. Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Clin Orthop Relat Res. 2000;(372):3-8.
[15] 杨锐敏, 吴文正, 郑永泽, 等. 不同松质骨体积分数影响股骨近端表观力学响应的有限元分析[J].中国组织工程研究,2021,25(36):5765-5770.
[16] 郑永泽, 郑利钦, 何兴鹏, 等. 基于ABAQUS软件股骨颈骨折的扩展有限元建模分析[J]. 中国组织工程研究,2022,26(6):853-857.
[17] 杨彬, 何伟, 魏秋实, 等. 高仿真股骨头坏死的数字化表达[J]. 中华关节外科杂志,2012,6(4):588-595
[18] SANTIUSTE C, RODRÍGUEZ MM, GINER E, et al. The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone. Compos Struct. 2014;116(1):423-431.
[19 ] FAN X, ZHOU Y, DAI S, et al. Biomechanical effects of femoral neck system versus cannulated screws on treating young patients with Pauwels type III femoral neck fractures: a finite element analysis. BMC Musculoskelet Disord. 2024;25(1):83.
[20] 胡林, 陈凯, 黄晶, 等. 年龄因素对行人下肢损伤的影响研究[J]. 机械工程学报,2020,56(2):106-120.
[21] TURNER CH, BURR DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14(4):595-608.
[22] CARTER DR, HAYES WC. Bone compressive strength: the influence of density and strain rate. Science. 1976;194(4270):1174-1176.
[23] KWAVENY TM, MORGAN EF, NIEBUR GL, et al. Biomechanics of trabecular bone. Annu Rev Biomed Eng. 2001;3(1):307-333.
[24] MIRZAEI M, ALAVI F, ALLAVEISIll F, et al. Linear and nonlinear analyses of femoral fractures: a computational/experimental study. J Biomech. 2018;79(1):155-163.
[25] CLAIRE CV, ANDREW TMP. Influence of a change in activity regime on femoral bone architecture and failure behaviour. PLoS One. 2024;19(4):e0297932.
[26] ALVARO LH, ESPERANZA MGC, MARINA LP, et al. Mechanical complications of proximal femur fractures treated with intramedullary nailing: a retrospective study. Medicina. 2024;60(5):718.
[27] SVERRE AIL, HANNA CW, ROMKE VB, et al. Evaluation of quality of life after nonoperative or operative management of proximal femoral fractures in frail institutionalized patients: the FRAIL-HIP study. JAMA Surg. 2022;157(5):424-434.
[28] SEEMAN E. Bone quality: the material and structural basis of bone strength. J Bone Miner Metab. 2008;26(1):1-8.
[29] MACDONALD HM, NISHIYAMA KK, KANG J, et al. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res. 2011;26(1):50-62.
[30] ROUX JP, WEGRZYN J, ARLOT ME, et al. Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex vivo study. J Bone Miner Res. 2010;25(2):356-361.
[31] LI B, ASPDEN RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res. 1997;12(4):641-651.
[32] WANG J, ZHOU B, PARKINSON I, et al. Trabecular plate loss and deteriorating elastic modulus of femoral trabecular bone in intertrochanteric hip fractures. Bone Res. 2013;1(4):346-354.
[33] 郑利钦, 林梓凌, 李鹏飞, 等. 动态载荷下松质骨对骨质疏松骨折断裂力学影响的有限元分析[J]. 中国组织工程研究,2019,23(12):1887-1892.
[34] LOTZ JC, GERHART TN, HAYES WC. Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J Comput Assist Tomogr. 1990;14(1):107-114.
[35] COURTNEY AC, WACHTEL EF, MYERS ER, et al. Effects of loading rate on strength of the proximal femur. Calcif Tissue Int. 1994;55(1):53-58.
[36] TAYLOR D, LEE TC. Microdamage and mechanical behaviour: predicting failure and remodeling in compact bone. J Anat. 2003;203(2):203-211. |