[1] LINK W. Introduction to FOXO biology. Methods Mol Biol. 2019;1890:1-9.
[2] OREA-SOUFI A, PAIK J, BRAGANÇA J, et al. FOXO transcription factors as therapeutic targets in human diseases. Trends Pharmacol Sci. 2022;43(12): 1070-1084.
[3] MA X, SU P, YIN C, et al. The roles of FoxO transcription factors in regulation of bone cells function. Int J Mol Sci. 2020;21(3):692.
[4] GRAVES DT, MILOVANOVA TN. Mucosal immunity and the FOXO1 transcription factors. Front Immunol. 2019;10:2530.
[5] LEE KI, CHOI S, MATSUZAKI T, et al. FOXO1 and FOXO3 transcription factors have unique functions in meniscus development and homeostasis during aging and osteoarthritis. Proc Natl Acad Sci U S A. 2020;117(6):3135-3143.
[6] BYRNES K, BLESSINGER S, BAILEY NT, et al. Therapeutic regulation of autophagy in hepatic metabolism. Acta Pharm Sin B. 2022;12(1):33-49.
[7] THIEL G, GUETHLEIN LA, RÖSSLER OG. Insulin-responsive transcription factors. Biomolecules. 2021;11(12):1886.
[8] ADIGUZEL D, CELIK-OZENCI C. FoxO1 is a cell-specific core transcription factor for endometrial remodeling and homeostasis during menstrual cycle and early pregnancy. Hum Reprod Update. 2021;27(3):570-583.
[9] CHEN J, LU Y, TIAN M, et al. Molecular mechanisms of FOXO1 in adipocyte differentiation. J Mol Endocrinol. 2019;62(3):R239-R253.
[10] YU W, CHEN C, CHENG J. The role and molecular mechanism of FoxO1 in mediating cardiac hypertrophy. ESC Heart Fail. 2020;7(6):3497-3504.
[11] XING YQ, LI A, YANG Y, et al. The regulation of FOXO1 and its role in disease progression. Life Sci. 2018;193:124-131.
[12] GUO LT, WANG SQ, SU J, et al. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflammation. 2019;16(1):95.
[13] MURTAZA G, KHAN AK, RASHID R, et al. FOXO Transcriptional factors and long-term living. Oxid Med Cell Longev. 2017;2017:3494289.
[14] WANG S, XIA P, HUANG G, et al. FoxO1-mediated autophagy is required for NK cell development and innate immunity. Nat Commun. 2016;7:11023.
[15] SCHÄLL D, SCHMITT F, REIS B, et al. SLy1 regulates T-cell proliferation during Listeria monocytogenes infection in a Foxo1-dependent manner. Eur J Immunol. 2015;45(11):3087-3097.
[16] CHEN D, GONG Y, XU L, et al. Bidirectional regulation of osteogenic differentiation by the FOXO subfamily of Forkhead transcription factors in mammalian MSCs. Cell Prolif. 2019;52(2):e12540.
[17] TEIXEIRA CC, LIU Y, Thant LM, et al. Foxo1, a novel regulator of osteoblast differentiation and skeletogenesis. J Biol Chem. 2010;285(40):31055-31065.
[18] NOMURA K, KIMIRA Y, OSAWA Y, et al. Stimulation of the Runx2 P1 promoter by collagen-derived dipeptide prolyl-hydroxyproline bound to Foxg1 and Foxo1 in osteoblasts. Biosci Rep. 2021;41(12):BSR20210304.
[19] SIQUEIRA MF, FLOWERS S, BHATTACHARYA R, et al. FOXO1 modulates osteoblast differentiation. Bone. 2011;48(5):1043-1051.
[20] WANG D, WANG Y, ZOU X, et al. FOXO1 inhibition prevents renal ischemia-reperfusion injury via cAMP-response element binding protein/PPAR-γ coactivator-1α-mediated mitochondrial biogenesis. Br J Pharmacol. 2020; 177(2):432-448.
[21] TAMAMA K, KAWASAKI H, KERPEDJIEVA SS, et al. Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. J Cell Biochem. 2011;112(3):804-817.
[22] XIONG Y, ZHANG Y, GUO Y, et al. 1α, 25-Dihydroxyvitamin D(3) increases implant osseointegration in diabetic mice partly through FoxO1 inactivation in osteoblasts. Biochem Biophys Res Commun. 2017;494(3-4):626-633.
[23] XIONG Y, ZHANG Y, ZHOU F, et al. FOXO1 differentially regulates bone formation in young and aged mice. Cell Signal. 2022;99:110438.
[24] KODE A, MOSIALOU I, SILVA BC, et al. FoxO1 protein cooperates with ATF4 protein in osteoblasts to control glucose homeostasis. J Biol Chem. 2012, 287(12):8757-68.
[25] RACHED MT, KODE A, XU L, et al. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 2010;11(2):147-160.
[26] IYER S, AMBROGINI E, BARTELL SM, et al. FOXOs attenuate bone formation by suppressing Wnt signaling. J Clin Invest. 2013;123(8):3409-3019.
[27] BUCK DW 2ND, DUMANIAN GA. Bone biology and physiology: Part I. The fundamentals. Plast Reconstr Surg. 2012;129(6):1314-1320.
[28] UDAGAWA N, KOIDE M, NAKAMURA M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39(1):19-26.
[29] NAKASHIMA T, HAYASHI M, TAKAYANAGI H. New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab. 2012;23(11):582-590.
[30] WANG Y, DONG G, JEON HH, et al. FOXO1 mediates RANKL-induced osteoclast formation and activity. J Immunol. 2015;194(6):2878-2887.
[31] DENG W, DING Z, WANG Y, et al. Dendrobine attenuates osteoclast differentiation through modulating ROS/NFATc1/ MMP9 pathway and prevents inflammatory bone destruction. Phytomedicine. 2022;96:153838.
[32] TAN P, GUAN H, XIE L, et al. FOXO1 inhibits osteoclastogenesis partially by antagnozing MYC. Sci Rep. 2015;5:16835.
[33] DING Z, QIU M, ALHARBI MA, et al. FOXO1 expression in chondrocytes modulates cartilage production and removal in fracture healing. Bone. 2021;148:115905.
[34] JING Z, WANG C, WEN S, et al. Phosphocreatine promotes osteoblastic activities in H(2)O(2)-induced MC3T3-E1 cells by regulating SIRT1/FOXO1/PGC-1α signaling pathway. Curr Pharm Biotechnol. 2021;22(5):609-621.
[35] AMEEN O, YASSIEN RI, NAGUIB YM. Activation of FoxO1/SIRT1/RANKL/OPG pathway may underlie the therapeutic effects of resveratrol on aging-dependent male osteoporosis. BMC Musculoskelet Disord. 2020;21(1):375.
[36] SHARIEH F, EBY JM, ROPER PM, et al. Ethanol inhibits mesenchymal stem cell osteochondral lineage differentiation due in part to an activation of forkhead box protein O-specific signaling. Alcohol Clin Exp Res. 2020; 44(6):1204-1213.
[37] DENG Z, LI Y, LIU H, et al. The role of sirtuin 1 and its activator, resveratrol in osteoarthritis. Biosci Rep. 2019;39(5):BSR20190189.
[38] LIANG C, XING H, WANG C, et al. Resveratrol protection against IL-1β-induced chondrocyte damage via the SIRT1/FOXO1 signaling pathway. J Orthop Surg Res. 2022;17(1):406.
[39] ZHU S, BENNETT S, LI Y, et al. The molecular structure and role of LECT2 or CHM-II in arthritis, cancer, and other diseases. J Cell Physiol. 2022;237(1): 480-488.
[40] NG F, TANG BL. Sirtuins’ modulation of autophagy. J Cell Physiol. 2013; 228(12):2262-2270.
[41] SACITHARAN PK, BOU-GHARIOS G, EDWARDS JR. SIRT1 directly activates autophagy in human chondrocytes. Cell Death Discov. 2020;6:41.
[42] WANG C, SHEN J, YING J, et al. FoxO1 is a crucial mediator of TGF-β/TAK1 signaling and protects against osteoarthritis by maintaining articular cartilage homeostasis. Proc Natl Acad Sci U S A. 2020;117(48):30488-30497.
[43] KURAKAZU I, AKASAKI Y, TSUSHIMA H, et al. TGFβ1 signaling protects chondrocytes against oxidative stress via FOXO1-autophagy axis. Osteoarthritis Cartilage. 2021;29(11):1600-1613.
[44] 黄威.SGK1调控骨关节炎软骨细胞合成和分解代谢的分子机制研究[D].合肥:安徽医科大学,2019.
[45] HUANG W, CHENG C, SHAN WS, et al. Knockdown of SGK1 alleviates the IL-1β-induced chondrocyte anabolic and catabolic imbalance by activating FoxO1-mediated autophagy in human chondrocytes. FEBS J. 2020;287(1):94-107.
[46] MATSUZAKI T, ALVAREZ-GARCIA O, MOKUDA S, et al. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci Transl Med. 2018;10(428):eaan0746.
[47] LIU F, YANG H, LI D, et al. Punicalagin attenuates osteoarthritis progression via regulating Foxo1/Prg4/HIF3α axis. Bone. 2021;152:116070.
[48] SUN Y, MAUERHAN DR. Meniscal calcification, pathogenesis and implications. Curr Opin Rheumatol. 2012;24(2):152-157.
[49] WANG J, ZHANG Y, CAO J, et al. The role of autophagy in bone metabolism and clinical significance. Autophagy. 2023;19(9):2409-2427.
[50] PARK SY, KIM KH, KIM S, et al. BMP-2 gene delivery-based bone regeneration in dentistry. Pharmaceutics. 2019;11(8):393.
[51] ALHARBI MA, ZHANG C, LU C, et al. FOXO1 deletion reverses the effect of diabetic-induced impaired fracture healing. Diabetes. 2018;67(12): 2682-2694.
[52] ZHANG C, FEINBERG D, ALHARBI M, et al. Chondrocytes promote vascularization in fracture healing through a FOXO1-dependent mechanism. J Bone Miner Res. 2019;34(3):547-556.
[53] 张赐童.软骨细胞通过转录因子FoxO1促进骨折愈合中血管的形成[D].长春:吉林大学,2019.
[54] 董书琴,卢宇,高菲,等.FoxO1在糖脂代谢机制中的研究进展[J].大连医科大学学报,2021,43(5):445-450.
[55] 谭鹏.转录因子FOXO1对破骨细胞分化及功能影响的实验研究[D].武汉:华中科技大学,2017.
[56] OHZONO H, HU Y, NAGIRA K, et al. Targeting FoxO transcription factors with HDAC inhibitors for the treatment of osteoarthritis. Ann Rheum Dis. 2023;82(2):262-271.
|