[1] VIRANI SS, ALONSO A, BENJAMIN EJ, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020;141(9):e139-e596.
[2] MURRY CE, MACLELLAN WR. Stem cells and the heart-the road ahead. Science. 2020;367(6480):854-855.
[3] TENREIRO MF, LOURO AF, ALVES PM, et al. Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. NPJ Regen Med. 2021;6(1):30.
[4] 李涵,国海东.诱导多能干细胞衍生的心肌细胞成熟问题及解决策略[J].中国组织化学与细胞化学杂志,2020,29(1):81-86.
[5] LOPEZ CA, AL-SIDDIQI HHAA, PURNAMA U, et al. Physiological and pharmacological stimulation for in vitro maturation of substrate metabolism in human induced pluripotent stem cell-derived cardiomyocytes. Sci Rep. 2021; 11(1):7802.
[6] FORGHANI P, RASHID A, ARMAND LC, et al. Simulated microgravity improves maturation of cardiomyocytes derived from human induced pluripotent stem cells. Sci Rep. 2024;14(1):2243.
[7] JI S, TU W, HUANG C, et al. The Aurora Kinase Inhibitor CYC116 Promotes the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Mol Cells. 2022;45(12):923-934.
[8] XIANG H, XU H, TAN B, et al. AKAP1 Regulates Mitochondrial Dynamics during the Fatty-Acid-Promoted Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Indicated by Proteomics Sequencing. Int J Mol Sci. 2023;24(9):8112.
[9] GUO Y, PU WT. Cardiomyocyte Maturation: New Phase in Development. Circ Res. 2020;126(8):1086-1106.
[10] KARBASSI E, FENIX A, MARCHIANO S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020; 17(6):341-359.
[11] GARAY BI, GIVENS S, ABREU P, et al. Dual inhibition of MAPK and PI3K/AKT pathways enhances maturation of human iPSC-derived cardiomyocytes. Stem Cell Reports. 2022;17(9):2005-2022.
[12] NOH JM, CHOI SC, SONG MH, et al. The Activation of the LIMK/Cofilin Signaling Pathway via Extracellular Matrix-Integrin Interactions Is Critical for the Generation of Mature and Vascularized Cardiac Organoids. Cells. 2023;12(16):2029.
[13] 叶亮.AMPK调节线粒体功能促进hiPSC-CMs成熟的研究[D].重庆:重庆医科大学,2021.
[14] 李晓童.基质硬度对人iPSCs源性心肌细胞成熟性的影响及机制[D].上海:第二军医大学,2017.
[15] SCUDERI GJ, BUTCHER J. Naturally Engineered Maturation of Cardiomyocytes. Front Cell Dev Biol. 2017;5:50.
[16] 刘经纶,秦丽颖,廖凌子,等.调控人多能干细胞来源心肌样细胞分化成熟的信号通路及其相关化合物研究进展[J].中国细胞生物学学报,2021, 43(9):1861-1868.
[17] SUN X, NUNES SS. Bioengineering Approaches to Mature Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cell Dev Biol. 2017;5:19.
[18] GU X, ZHOU F, MU J. Recent Advances in Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes Promoted by Mechanical Stretch. Med Sci Monit. 2021;27:e931063.
[19] PROTZE SI, LEE JH, KELLER GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell. 2019;25(3):311-327.
[20] LIU Y, OYUNBAATAR NE, SHANMUGASUNDARAM A, et al. Nano-textured polydimethylsiloxane cantilever with embedded silver nanowire networks for drug screening applications. Sens Actuators B Chem. 2023;390:134014.
[21] SOTTAS V, WAHL CM, TRACHE MC, et al. Improving electrical properties of iPSC-cardiomyocytes by enhancing Cx43 expression. J Mol Cell Cardiol. 2018;120: 31-41.
[22] RONALDSON-BOUCHARD K, MA SP, YEAGER K, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018; 556(7700):239-243.
[23] GONZALEZ G, NELSON AC, HOLMAN AR, et al. Conductive electrospun polymer improves stem cell-derived cardiomyocyte function and maturation. Biomaterials. 2023;302:122363.
[24] 戴越,周帆,郑建伟.机械牵张对人诱导多能干细胞分化来源的心肌细胞成熟的影响[J].北京生物医学工程,2023,42(2):130-137.
[25] ABILEZ OJ, TZATZALOS E, YANG H, et al. Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling. Stem Cells. 2018;36(2):265-277.
[26] LEONARD A, BERTERO A, POWERS JD, et al. Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J Mol Cell Cardiol. 2018;118:147-158.
[27] LUX M, ANDRÉE B, HORVATH T, et al. In vitro maturation of large-scale cardiac patches based on a perfusable starter matrix by cyclic mechanical stimulation. Acta Biomater. 2016;30:177-187.
[28] KYRIAKOU S, LUBIG A, SANDHOFF CA, et al. Influence of Diameter and Cyclic Mechanical Stimulation on the Beating Frequency of Myocardial Cell-Laden Fibers. Gels. 2023;9(9):677.
[29] YANG X, PABON L, MURRY CE. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res. 2014;114(3):511-523.
[30] CUI C, WANG J, QIAN D, et al. Binary Colloidal Crystals Drive Spheroid Formation and Accelerate Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ACS Appl Mater Interfaces. 2019; 11(4):3679-3689.
[31] LIN Y, ZHANG F, CHEN S, et al. Binary Colloidal Crystals Promote Cardiac Differentiation of Human Pluripotent Stem Cells via Nuclear Accumulation of SETDB1. ACS Nano. 2023;17(3):3181-3193.
[32] TAN Y, LU T, CHEN Y, et al. Engineering a conduction-consistent cardiac patch with graphene oxide modified butterfly wings and human pluripotent stem cell-derived cardiomyocytes. Bioeng Transl Med. 2023;8(3):e10522.
[33] TAKADA T, SASAKI D, MATSUURA K, et al. Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials. 2022; 281:121351.
[34] XU C, WANG L, YU Y, et al. Bioinspired onion epithelium-like structure promotes the maturation of cardiomyocytes derived from human pluripotent stem cells. Biomater Sci. 2017;5(9):1810-1819.
[35] JIMENEZ-VAZQUEZ EN, JAIN A, JONES DK. Enhancing iPSC-CM Maturation Using a Matrigel-Coated Micropatterned PDMS Substrate. Curr Protoc. 2022;2(11):e601.
[36] AHMED RE, ANZAI T, CHANTHRA N, et al. A Brief Review of Current Maturation Methods for Human Induced Pluripotent Stem Cells-Derived Cardiomyocytes. Front Cell Dev Biol. 2020;8:178.
[37] ZHANG R, GUO T, HAN Y, et al. Design of synthetic microenvironments to promote the maturation of human pluripotent stem cell derived cardiomyocytes. J Biomed Mater Res B Appl Biomater. 2021;109(7): 949-960.
[38] FEASTER TK, CADAR AG, WANG L, et al. Matrigel Mattress: A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Res. 2015;117(12):995-1000.
[39] WANG Y, YU M, HAO K, et al. Cardiomyocyte Maturation-the Road is not Obstructed. Stem Cell Rev Rep. 2022;18(8):2966-2981.
[40] TAN SH, YE L. Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes: a Critical Step for Drug Development and Cell Therapy. J Cardiovasc Transl Res. 2018;11(5):375-392.
[41] WU P, DENG G, SAI X, et al. Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep. 2021;41(6): BSR20200833.
[42] PARIKH SS, BLACKWELL DJ, GOMEZ-HURTADO N, et al. Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Res. 2017;121(12): 1323-1330.
[43] WANG L, WADA Y, BALLAN N, et al. Triiodothyronine and dexamethasone alter potassium channel expression and promote electrophysiological maturation of human-induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 2021;161:130-138.
[44] GARBERN JC, LEE RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2021;12(1):177.
[45] 高桢,周帆,穆军升.脂肪酸对诱导多能干细胞分化成熟为心肌细胞的影响进展[J].中华实验外科杂志,2022,39(11):2285-2288.
[46] 张心愿.人诱导多能干细胞来源心肌细胞成熟过程中NRF2对能量代谢的调节作用[D].重庆:重庆医科大学,2021.
[47] YANG X, RODRIGUEZ ML, LEONARD A, et al. Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Reports. 2019;13(4):657-668.
[48] HORIKOSHI Y, YAN Y, TERASHVILI M, et al. Fatty Acid-Treated Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes Exhibit Adult Cardiomyocyte-Like Energy Metabolism Phenotypes. Cells. 2019; 8(9):1095.
[49] NAKANO H, MINAMI I, BRAAS D, et al. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. Elife. 2017;6:e29330.
[50] 陈颖,杨礼,宫艺其,等.Torin1、Nutlin-3a促进人诱导多能干细胞来源早期心肌细胞成熟的初步研究[J].组织工程与重建外科,2021,17(6):511-519.
[51] CORREIA C, CHRISTOFFERSSON J, TEJEDOR S, et al. Enhancing Maturation and Translatability of Human Pluripotent Stem Cell-Derived Cardiomyocytes through a Novel Medium Containing Acetyl-CoA Carboxylase 2 Inhibitor. Cells. 2024;13(16):1339.
[52] LEE SG, RHEE J, SEOK J, et al. Promotion of maturation of human pluripotent stem cell-derived cardiomyocytes via treatment with the peroxisome proliferator-activated receptor alpha agonist Fenofibrate. Stem Cells Transl Med. 2024;13(8):750-762.
[53] CHIRICO N, KESSLER EL, MAAS RGC, et al. Small molecule-mediated rapid maturation of human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2022;13(1):531.
[54] WICKRAMASINGHE NM, SACHS D, SHEWALE B, et al. PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 2022;29(4):559-576.e7.
[55] 谢敏,周琴,颜亮,等.齐墩果酸对hiPSCs衍生心肌细胞成熟的促进作用及机制[J].解放军医学杂志,2021,46(4):319-326.
[56] POHJOLAINEN L, KINNUNEN SM, AUNO S, et al. Switching of hypertrophic signalling towards enhanced cardiomyocyte identity and maturity by a GATA4-targeted compound. Stem Cell Res Ther. 2024;15(1):5.
[57] KIM YS, YOON JW, KIM D, et al. Tomatidine-stimulated maturation of human embryonic stem cell-derived cardiomyocytes for modeling mitochondrial dysfunction. Exp Mol Med. 2022;54(4):493-502.
[58] LI D, ARMAND LC, SUN F, et al. AMPK activator-treated human cardiac spheres enhance maturation and enable pathological modeling. Stem Cell Res Ther. 2023;14(1):322.
[59] MIRBAGHERI M, ADIBNIA V, HUGHES BR, et al. Advanced cell culture platforms: a growing quest for emulating natural tissues. Mater Horiz. 2019; 6(1): 45-71.
[60] ZHANG G, LI W, YU M, et al. Electric-Field-Driven Printed 3D Highly Ordered Microstructure with Cell Feature Size Promotes the Maturation of Engineered Cardiac Tissues. Adv Sci (Weinh). 2023;10(11):e2206264.
[61] COCA E, CHO S, KAUFFMAN C, et al. Environmental Cues Facilitate Maturation and Patterning of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cell Physiol Biochem. 2024;58(5):538-547.
[62] VARZIDEH F, PAHLAVAN S, ANSARI H, et al. Human cardiomyocytes undergo enhanced maturation in embryonic stem cell-derived organoid transplants. Biomaterials. 2019;192:537-550.
[63] LI H, YE W, YU B, et al. Supramolecular Assemblies of Glycopeptides Enhance Gap Junction Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes via Inducing Spheroids Formation to Optimize Cardiac Repair. Adv Healthc Mater. 2023;12(25):e2300696.
[64] DATTOLA E, PARROTTA EI, SCALISE S, et al. Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications. RSC Adv. 2019;9(8):4246-4257.
[65] ZHANG M, XU Y, CHEN Y, et al. Three-Dimensional Poly-(ε-Caprolactone) Nanofibrous Scaffolds Promote the Maturation of Human Pluripotent Stem Cells-Induced Cardiomyocytes. Front Cell Dev Biol. 2022;10:875278.
[66] KERMANI F, MOSQUEIRA M, PETERS K, et al. Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes. Basic Res Cardiol. 2023;118(1):13.
[67] CAMELLITI P, BORG TK, KOHL P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005;65(1):40-51.
[68] BRUTSAERT DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003;83(1):59-115.
[69] PINTO AR, ILINYKH A, IVEY MJ, et al. Revisiting Cardiac Cellular Composition. Circ Res. 2016;118(3):400-409.
[70] KLESEN A, JAKOB D, EMIG R, et al. Cardiac fibroblasts : Active players in (atrial) electrophysiology? Herzschrittmacherther Elektrophysiol. 2018;29(1):62-69.
[71] YOSHIDA S, MIYAGAWA S, FUKUSHIMA S, et al. Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Soluble Factors from Human Mesenchymal Stem Cells. Mol Ther. 2018;26(11):2681-2695.
[72] VARZIDEH F, MAHMOUDI E, PAHLAVAN S. Coculture with noncardiac cells promoted maturation of human stem cell-derived cardiomyocyte microtissues. J Cell Biochem. 2019;120(10):16681-16691.
[73] DUNN KK, REICHARDT IM, SIMMONS AD, et al. Coculture of Endothelial Cells with Human Pluripotent Stem Cell-Derived Cardiac Progenitors Reveals a Differentiation Stage-Specific Enhancement of Cardiomyocyte Maturation. Biotechnol J. 2019;14(8):e1800725.
[74] TAN JJ, GUYETTE JP, MIKI K, et al. Human iPS-derived pre-epicardial cells direct cardiomyocyte aggregation expansion and organization in vitro. Nat Commun. 2021;12(1):4997.
[75] MA Z, WANG J, LOSKILL P, et al. Self-organizing human cardiac microchambers mediated by geometric confinement. Nat Commun. 2015;6:7413.
[76] WARMFLASH A, SORRE B, ETOC F, et al. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods. 2014;11(8):847-854.
[77] GIACOMELLI E, MERAVIGLIA V, CAMPOSTRINI G, et al. Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell. 2020; 26(6):862-879.e11.
[78] RUAN JL, TULLOCH NL, RAZUMOVA MV, et al. Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue. Circulation. 2016;134(20):1557-1567.
[79] MAIHEMUTI W, MURATA K, ABULAITI M, et al. Simultaneous electro-dynamic stimulation accelerates maturation of engineered cardiac tissues generated by human iPS cells. Biochem Biophys Res Commun. 2024;733:150605.
[80] SHEN S, SEWANAN LR, SHAO S, et al. Physiological calcium combined with electrical pacing accelerates maturation of human engineered heart tissue. Stem Cell Reports. 2022;17(9):2037-2049.
[81] SUN X, NUNES SS. Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Methods. 2016;101:21-26.
[82] VELAYUTHAM N, GARBERN JC, ELWELL HLT, et al. P53 Activation Promotes Maturational Characteristics of Pluripotent Stem Cell-Derived Cardiomyocytes in 3-Dimensional Suspension Culture Via FOXO-FOXM1 Regulation. J Am Heart Assoc. 2024;13(13):e033155. |