[1] GADD VL, ALEKSIEVA N, FORBES SJ. Epithelial Plasticity during Liver Injury and Regeneration. Cell Stem Cell. 2020;27(4):557-573.
[2] OLIVO R, GUARRERA JV, PYRSOPOULOS NT. Liver Transplantation for Acute Liver Failure. Clin Liver Dis. 2018;22(2):409-417.
[3] DEVARBHAVI H, ASRANI SK, ARAB JP, et al. Global burden of liver disease: 2023 update. J Hepatol. 2023;79(2):516-537.
[4] ZHONG Y, YU JS, WANG X, et al. Chemical-based primary human hepatocyte monolayer culture for the study of drug metabolism and hepatotoxicity: Comparison with the spheroid model. FASEB J. 2021;35(3):e21379.
[5] NAJI A, EITOKU M, FAVIER B, et al. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019;76(17):3323-3348.
[6] AFSHARI A, SHAMDANI S, UZAN G, et al. Different approaches for transformation of mesenchymal stem cells into hepatocyte-like cells. Stem Cell Res Ther. 2020; 11(1):54.
[7] YE JS, SU XS, STOLTZ JF, et al. Signalling pathways involved in the process of mesenchymal stem cells differentiating into hepatocytes. Cell Prolif. 2015;48(2): 157-165.
[8] BEHBAHAN IS, DUAN Y, LAM A, et al. New approaches in the differentiation of human embryonic stem cells and induced pluripotent stem cells toward hepatocytes. Stem Cell Rev Rep. 2011;7(3):748-759.
[9] 彭蕾,杨骁,王敏君.获得诱导性肝细胞样细胞的策略研究[J].中国细胞生物学学报,2022,44(3):512-519.
[10] SUN H, SHI C, YE Z, et al. The role of mesenchymal stem cells in liver injury. Cell Biol Int. 2022;46(4):501-511.
[11] OZKUL Y, GALDERISI U. The Impact of Epigenetics on Mesenchymal Stem Cell Biology. J Cell Physiol. 2016;231(11):2393-2401.
[12] MORTADA I, MORTADA R. Epigenetic changes in mesenchymal stem cells differentiation. Eur J Med Genet. 2018;61(2):114-118.
[13] JAUKOVIĆ A, ABADJIEVA D, TRIVANOVIĆ D, et al. Specificity of 3D MSC Spheroids Microenvironment: Impact on MSC Behavior and Properties. Stem Cell Rev Rep. 2020;16(5):853-875.
[14] RYU NE, LEE SH, PARK H. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells. 2019;8(12):1620.
[15] WU X, SU J, WEI J, et al. Recent Advances in Three-Dimensional Stem Cell Culture Systems and Applications. Stem Cells Int. 2021;2021: 9477332.
[16] KOUROUPIS D, CORREA D. Increased Mesenchymal Stem Cell Functionalization in Three-Dimensional Manufacturing Settings for Enhanced Therapeutic Applications. Front Bioeng Biotechnol. 2021;9: 621748.
[17] XU Q. Human Three-Dimensional Hepatic Models: Cell Type Variety and Corresponding Applications. Front Bioeng Biotechnol. 2021;9:730008.
[18] OKURA H, KOMODA H, SAGA A, et al. Properties of hepatocyte-like cell clusters from human adipose tissue-derived mesenchymal stem cells. Tissue Eng Part C Methods. 2010;16(4):761-770.
[19] CIPRIANO M, FREYER N, KNÖSPEL F, et al. Self-assembled 3D spheroids and hollow-fibre bioreactors improve MSC-derived hepatocyte-like cell maturation in vitro. Arch Toxicol. 2017;91(4):1815-1832.
[20] OCK SA, KIM SY, JU WS, et al. Adipose Tissue-Derived Mesenchymal Stem Cells Extend the Lifespan and Enhance Liver Function in Hepatocyte Organoids. Int J Mol Sci. 2023;24(20):15429.
[21] MCKEE C, CHAUDHRY GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces. 2017;159:62-77.
[22] RAGHAV PK, MANN Z, AHLAWAT S, et al. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. Eur J Pharmacol. 2022;918: 174657.
[23] YAN XZ, VAN DEN BEUCKEN JJ, BOTH SK, et al. Biomaterial strategies for stem cell maintenance during in vitro expansion. Tissue Eng Part B Rev. 2014;20(4):340-354.
[24] LI YS, HARN HJ, HSIEH DK, et al. Cells and materials for liver tissue engineering. Cell Transplant. 2013;22(4):685-700.
[25] ASADI M, LOTFI H, SALEHI R, et al. Hepatic cell-sheet fabrication of differentiated mesenchymal stem cells using decellularized extracellular matrix and thermoresponsive polymer. Biomed Pharmacother. 2021;134:111096.
[26] WANG Y, LEE JH, SHIRAHAMA H, et al. Extracellular Matrix Functionalization and Huh-7.5 Cell Coculture Promote the Hepatic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells in a 3D ICC Hydrogel Scaffold. ACS Biomater Sci Eng. 2016;2(12):2255-2265.
[27] XU L, WANG S, SUI X, et al. Mesenchymal Stem Cell-Seeded Regenerated Silk Fibroin Complex Matrices for Liver Regeneration in an Animal Model of Acute Liver Failure. ACS Appl Mater Interfaces. 2017;9(17):14716-14723.
[28] ALEAHMAD F, EBRAHIMI S, SALMANNEZHAD M, et al. Heparin/Collagen 3D Scaffold Accelerates Hepatocyte Differentiation of Wharton’s Jelly-Derived Mesenchymal Stem Cells. Tissue Eng Regen Med. 2017;14(4):443-452.
[29] LI J, TAO R, WU W, et al. 3D PLGA scaffolds improve differentiation and function of bone marrow mesenchymal stem cell-derived hepatocytes. Stem Cells Dev. 2010;19(9):1427-1436.
[30] PROCTOR WR, FOSTER AJ, VOGT J, et al. Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury. Arch Toxicol. 2017;91(8):2849-2863.
[31] YANG Y, JIA Y, YANG Q, et al. REVIEW ARTICLE Engineering bio-inks for 3D bioprinting cell mechanical microenvironment. Int J Bioprint. 2022;9(1):632.
[32] MURPHY SV, ATALA A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014; 32(8):773-785.
[33] XIE R, PAL V, YU Y, et al. A comprehensive review on 3D tissue models: Biofabrication technologies and preclinical applications. Biomaterials. 2024;304: 122408.
[34] LEE HJ, KIM YB, AHN SH, et al. A New Approach for Fabricating Collagen/ECM-Based Bioinks Using Preosteoblasts and Human Adipose Stem Cells. Adv Healthc Mater. 2015;4(9):1359-1368.
[35] ZHANG J, CHEN X, CHAI Y, et al. 3D Printing of a Vascularized Mini-Liver Based on the Size-Dependent Functional Enhancements of Cell Spheroids for Rescue of Liver Failure. Adv Sci (Weinh). 2024;11(17):e2309899.
[36] MASTRANGELI M, MILLET S, ORCHID PARTNERS T, et al. Organ-on-chip in development: Towards a roadmap for organs-on-chip. ALTEX. 2019;36(4):650-668.
[37] EHRLICH A, DUCHE D, OUEDRAOGO G, et al. Challenges and Opportunities in the Design of Liver-on-Chip Microdevices. Annu Rev Biomed Eng. 2019;21:219-239.
[38] UNDERHILL GH, KHETANI SR. Bioengineered Liver Models for Drug Testing and Cell Differentiation Studies. Cell Mol Gastroenterol Hepatol. 2017;5(3):426-439.e1.
[39] YEN MH, WU YY, LIU YS, et al. Efficient generation of hepatic cells from mesenchymal stromal cells by an innovative bio-microfluidic cell culture device. Stem Cell Res Ther. 2016;7(1):120.
[40] LI Z, SUN X. Epigenetic regulation in liver regeneration. Life Sci. 2024;353:122924.
[41] WALEWSKA A, JANUCIK A, TYNECKA M, et al. Mesenchymal stem cells under epigenetic control - the role of epigenetic machinery in fate decision and functional properties. Cell Death Dis. 2023;14(11):720.
[42] JANG S, HWANG J, JEONG HS. The Role of Histone Acetylation in Mesenchymal Stem Cell Differentiation. Chonnam Med J. 2022;58(1): 6-12.
[43] SUI BD, ZHENG CX, LI M, et al. Epigenetic Regulation of Mesenchymal Stem Cell Homeostasis. Trends Cell Biol. 2020;30(2):97-116.
[44] TSAI WL, YEH PH, TSAI CY, et al. Efficient programming of human mesenchymal stem cell-derived hepatocytes by epigenetic regulations. J Gastroenterol Hepatol. 2017;32(1):261-269.
[45] CHEN Y, PAN RL, ZHANG XL, et al. Induction of hepatic differentiation of mouse bone marrow stromal stem cells by the histone deacetylase inhibitor VPA. J Cell Mol Med. 2009;13(8B):2582-2592.
[46] DONG X, PAN R, ZHANG H, et al. Modification of histone acetylation facilitates hepatic differentiation of human bone marrow mesenchymal stem cells. PLoS One. 2013;8(5):e63405.
[47] RAUT A, KHANNA A. Enhanced expression of hepatocyte-specific microRNAs in valproic acid mediated hepatic trans-differentiation of human umbilical cord derived mesenchymal stem cells. Exp Cell Res. 2016;343(2):237-247.
[48] AN SY, HAN J, LIM HJ, et al. Valproic acid promotes differentiation of hepatocyte-like cells from whole human umbilical cord-derived mesenchymal stem cells. Tissue Cell. 2014;46(2):127-135.
[49] PANTA W, IMSOONTHORNRUKSA S, YOISUNGNERN T, et al. Enhanced Hepatogenic Differentiation of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells by Using Three-Step Protocol. Int J Mol Sci. 2019;20(12):3016.
[50] JONES PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484-492.
[51] CIPRIANO M, CORREIA JC, CAMÕES SP, et al. The role of epigenetic modifiers in extended cultures of functional hepatocyte-like cells derived from human neonatal mesenchymal stem cells. Arch Toxicol. 2017;91(6):2469-2489.
[52] SEELIGER C, CULMES M, SCHYSCHKA L, et al. Decrease of global methylation improves significantly hepatic differentiation of Ad-MSCs: possible future application for urea detoxification. Cell Transplant. 2013;22(1):119-131.
[53] SNYKERS S, VANHAECKE T, DE BECKER A, et al. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow. BMC Dev Biol. 2007;7:24.
[54] 何宇涛,冉江华.DNA甲基化在肝脏再生中的研究现状与展望[J].中国普外基础与临床杂志,2020,27(4):494-498.
[55] TARIQUE S, NAEEM N, SALIM A, et al. The role of epigenetic modifiers in the hepatic differentiation of human umbilical cord derived mesenchymal stem cells. Biol Futur. 2022;73(4):495-502.
[56] ZHOU X, CUI L, ZHOU X, et al. Induction of hepatocyte-like cells from human umbilical cord-derived mesenchymal stem cells by defined microRNAs. J Cell Mol Med. 2017;21(5):881-893.
[57] LAUDADIO I, MANFROID I, ACHOURI Y, et al. A feedback loop between the liver-enriched transcription factor network and miR-122 controls hepatocyte differentiation. Gastroenterology. 2012;142(1):119-129.
[58] DAVOODIAN N, LOTFI AS, SOLEIMANI M, et al. MicroRNA-122 overexpression promotes hepatic differentiation of human adipose tissue-derived stem cells. J Cell Biochem. 2014;115(9):1582-1593.
[59] DAVOODIAN N, LOTFI AS, SOLEIMANI M, et al. Let-7f microRNA negatively regulates hepatic differentiation of human adipose tissue-derived stem cells. J Physiol Biochem. 2014;70(3):781-789.
[60] KHOSRAVI M, AZARPIRA N, SHAMDANI S, et al. Differentiation of umbilical cord derived mesenchymal stem cells to hepatocyte cells by transfection of miR-106a, miR-574-3p, and miR-451. Gene. 2018;667: 1-9.
[61] WEI H, LI F, XUE T, et al. MicroRNA-122-functionalized DNA tetrahedron stimulate hepatic differentiation of human mesenchymal stem cells for acute liver failure therapy. Bioact Mater. 2023;28:50-60.
[62] ZHANG G, LAN Y, XIE A, et al. Comprehensive analysis of long noncoding RNA (lncRNA)-chromatin interactions reveals lncRNA functions dependent on binding diverse regulatory elements. J Biol Chem. 2019;294(43):15613-15622.
[63] WANG Y, HE L, DU Y, et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell. 2015;16(4):413-425.
[64] 李梦,周云,禹亚彬,等.长链非编码RNA肝癌高表达转录本促进人骨髓间充质干细胞向肝样细胞的分化[J].中国组织工程研究,2019,23(29):4656-4661.
[65] YU Y, LI M, SONG Y, et al. Overexpression of long noncoding RNA CUDR promotes hepatic differentiation of human umbilical cord mesenchymal stem cells. Mol Med Rep. 2020;21(3):1051-1058.
[66] 王丹丹,禹亚彬,刘世奇,等.人脐带间充质干细胞向肝细胞分化过程中长链非编码RNA核富集转录本1的作用[J].中国组织工程研究,2022,26(30): 4847-4851.
[67] RASHID S, SALIM A, QAZI REM, et al. Sodium Butyrate Induces Hepatic Differentiation of Mesenchymal Stem Cells in 3D Collagen Scaffolds. Appl Biochem Biotechnol. 2022;194(8):3721-3732.
[68] RASHID S, QAZI RE, MALICK TS, et al. Effect of valproic acid on the hepatic differentiation of mesenchymal stem cells in 2D and 3D microenvironments. Mol Cell Biochem. 2021;476(2):909-919.
[69] YU Y, HUANG H, YE J, et al. 3D Spheroids Facilitate Differentiation of Human Adipose-Derived Mesenchymal Stem Cells into Hepatocyte-Like Cells via p300-Mediated H3K56 Acetylation. Stem Cells Transl Med. 2024;13(2):151-165.
[70] LI F, WEI H, JIN Y, et al. Microfluidic Fabrication of MicroRNA-Induced Hepatocyte-Like Cells/Human Umbilical Vein Endothelial Cells-Laden Microgels for Acute Liver Failure Treatment. ACS Nano. 2023;17(24):25243-25256. |