中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (28): 6146-6160.doi: 10.12307/2025.469
• 生物材料循证医学 evidence-based medicine of biomaterials • 上一篇
王锦福,杨 管
收稿日期:
2024-05-08
接受日期:
2024-07-08
出版日期:
2025-10-08
发布日期:
2024-12-09
通讯作者:
杨管,博士,副教授,硕士生导师,华南理工大学体育学院,广东省广州市 510641
作者简介:
王锦福,男,2000年生,广东省佛山市人,汉族,华南理工大学在读硕士,主要从事运动与健康促进相关研究。
基金资助:
Wang Jinfu, Yang Guan
Received:
2024-05-08
Accepted:
2024-07-08
Online:
2025-10-08
Published:
2024-12-09
Contact:
Yang Guan, PhD, Associate professor, Master’s supervisor, School of Physical Education, South China University of Technology, Guangzhou 510641, Guangdong Province, China
About author:
Wang Jinfu, Master candidate, School of Physical Education, South China University of Technology, Guangzhou 510641, Guangdong Province, China
Supported by:
摘要:
文题释义:
可穿戴设备:应用穿戴式技术对人们日常的穿戴进行智能化配置,可以用来客观测量用户日常身体活动,通过监视显示器或合作应用程序提供反馈的便携式设备。
目的:虽然可穿戴设备在促进老年人身体活动方面的潜在效益已得到认可,但现有研究针对该人群的具体效果尚未进行全面系统的评估。文章旨在系统评价可穿戴设备干预对老年人中高强度身体活动、低强度身体活动、总身体活动、每日步数以及久坐行为等身体活动相关指标的影响。
方法:通过PubMed、EMbase、Scopus、Ovid-Medline、The Cochrane Library、SPORTDiscus、CNKI、维普和万方等数据库检索文献,搜集关于可穿戴设备干预对老年人身体活动影响的随机对照试验,检索时限为各数据库建库至2024-03-10。采用Cochrane偏倚风险评估工具对纳入文献进行方法学质量评价,运用Review Manager 5.2和Stata 12.0软件进行数据合并、亚组分析、森林图绘制、敏感性分析、发表偏倚评价及单因素Meta回归分析。结论:当前证据表明,可穿戴设备干预在促进老年人每日步数、中高强度身体活动、低强度身体活动和总身体活动方面具有积极作用,建议在设计可穿戴设备干预方案时,考虑采用综合干预方式、干预时间≤12周并根据干预目标选择合适的设备。尽管如此,对于减少久坐行为的干预效果尚需更多高质量随机对照试验来进一步验证。
https://orcid.org/0000-0001-6529-5530(王锦福);https://orcid.org/0000-0002-9559-247X(杨管)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程
中图分类号:
王锦福, 杨 管. 可穿戴设备干预促进老年人身体活动的Meta分析[J]. 中国组织工程研究, 2025, 29(28): 6146-6160.
Wang Jinfu, Yang Guan. Meta-analysis of wearable device interventions to promote physical activity in older adults[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(28): 6146-6160.
[1] AMUTHAVALLI THIYAGARAJAN J, MIKTON C, HARWOOD RH, et al. The UN Decade of healthy ageing: strengthening measurement for monitoring health and wellbeing of older people. Age Ageing. 2022;51(7):afac147. [2] CHEN X, GILES J, YAO Y, et al. The path to healthy ageing in China: a Peking University-Lancet Commission. Lancet. 2022;400(10367):1967-2006. [3] STENSEL DJ. How can physical activity facilitate a sustainable future? Reducing obesity and chronic disease. Proc Nutr Soc. 2023;82(3):286-297. [4] D’ONOPRIO G, KIRSCHNER J, PRATHER H, et al. Musculoskeletal exercise: Its role in promoting health and longevity. Prog Cardiovasc Dis. 2023;77(4):25-36. [5] GOMES M, FIGUEIREDO D, TEIXEIRA L, et al. Physical inactivity among older adults across Europe based on the SHARE database. Age Ageing. 2017;46(1):71-79. [6] ZHOU Y, WU J, ZHANG S, et al. Prevalence and risk factors of physical inactivity among middle-aged and older Chinese in Shenzhen: a cross-sectional study. BMJ Open. 2018;8(10):e019775. [7] LEWIS ZH, LYONS EJ, JARVIS JM, et al. Using an electronic activity monitor system as an intervention modality: A systematic review. BMC Public Health. 2015;15(6):585-600. [8] CADMUS-BERTRAM L, WANG JB, PATTERSON RE, et al. Web-based self-monitoring for weight loss among overweight/obese women at increased risk for breast cancer: the HELP pilot study. Psycho-Oncol. 2013; 22(8):1821-1829. [9] LYONS EJ, SWARTZ MC, LEWIS ZH, et al. Feasibility and Acceptability of a Wearable Technology Physical Activity Intervention With Telephone Counseling for Mid-Aged and Older Adults: A Randomized Controlled Pilot Trial. JMIR Mhealth Uhealth. 2017; 5(3):e28. [10] NOLAN CM, MADDOCKS M, CANAVAN JL, et al. Pedometer Step Count Targets during Pulmonary Rehabilitation in Chronic Obstructive Pulmonary Disease. A Randomized Controlled Trial. Am J Respir Crit Care Med. 2017;195(10):1344-1352. [11] PEACOCK OJ, WESTERN MJ, BATTERHAM AM, et al. Effect of novel technology-enabled multidimensional physical activity feedback in primary care patients at risk of chronic disease-The MIPACT study: A randomised controlled trial. Int J Behav Nutr Phys Act. 2020;17(1):156-172. [12] BLOUNT DS, MCDONOUGH DJ, GAO Z. Effect of Wearable Technology-Based Physical Activity Interventions on Breast Cancer Survivors’ Physiological, Cognitive, and Emotional Outcomes: A Systematic Review. J Clin Med. 2021;10(9):2015-2034. [13] GAL R, MAY AM, VAN OVERMEEREN EJ, et al. The Effect of Physical Activity Interventions Comprising Wearables and Smartphone Applications on Physical Activity: a Systematic Review and Meta-analysis. Sports Med Open. 2018;4(1):42-48. [14] CHEATHAM SW, STULL KR, FANTIGRASSI M, et al. The efficacy of wearable activity tracking technology as part of a weight loss program: a systematic review. J Sports Med Phys Fitness. 2018;58(4):534-548. [15] OLIVEIRA J, SHERRINGTON C, ZHENG E, et al. Effect of interventions using physical activity trackers on physical activity in people aged 60 years and over: a systematic review and meta-analysis. Br J Sports Med. 2020;54(20):1188-1194. [16] COOPER C, GROSS A, BRINKMAN C, et al. The impact of wearable motion sensing technology on physical activity in older adults. Exp Gerontol. 2018;112(1):9-19. [17] PALUCH AE, BAJPAI S, BASSETT DR, et al. Daily steps and all-cause mortality: a meta-analysis of 15 international cohorts. Lancet Public health. 2022;7(3):e219-e228. [18] FISHMAN EI, STEEVES JA, ZIPUNNUKOV V, et al. Association between Objectively Measured Physical Activity and Mortality in NHANES. Med Sci Sports Exerc. 2016; 48(7):1303-1311. [19] BALLIN M, NORDSTROM P, NIKLASSON J, et al. Associations of Objectively Measured Physical Activity and Sedentary Time with the Risk of Stroke, Myocardial Infarction or All-Cause Mortality in 70-Year-Old Men and Women: A Prospective Cohort Study. Sports Med. 2021;51(2):339-349. [20] HIGGINS JP, ALTMAN DG, GØTZSCHE PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. [21] GUYATT GH, OXMAN AD, SCHüNEMANN HJ, et al. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011;64(4): 380-382. [22] 吴洋,王宇,李柏辰,等.疏肝解郁法治疗冠心病合并抑郁的Meta分析及GRADE评价[J].中西医结合心脑血管病杂志,2024,22(9):1547-1554. [23] WAN X, WANG W, LIU J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135-148. [24] BRICKWOOD KJ, WATSON G, O’BRIEN J, et al. Consumer-Based Wearable Activity Trackers Increase Physical Activity Participation: Systematic Review and Meta-Analysis. JMIR Mhealth Uhealth. 2019;7(4):e11819. [25] HIGGINS JP, THOMPSON SG, DEEKS JJ, et al. Measuring inconsistency in Meta-analyse. BMJ. 2003;327:557-560. [26] MCHUGH ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276-282. [27] ASHE MC, WINTERS M, HOPPMANN CA, et al. “Not just another walking program”: Everyday Activity Supports You (EASY) model-a randomized pilot study for a parallel randomized controlled trial. Pilot Feasibility Stud. 2015;1(1):367-379. [28] BLAIR CK, HARDING E, WIGGINS C, et al. A home-based mobile health intervention to replace sedentary time with light physical activity in older cancer survivors: Randomized controlled pilot trial. JMIR Cancer. 2021;7(2):281-295. [29] BRICKWOOD KJ, AHUJA KDK, WATSON G, et al. Effects of activity tracker use with health professional support or telephone counseling on maintenance of physical activity and health outcomes in older adults: Randomized controlled trial. JMIR Mhealth Uhealth. 2021;9(1):369-382. [30] CHRISTIANSEN MB, THOMA LM, MASTER H, et al. Feasibility and Preliminary Outcomes of a Physical Therapist-Administered Physical Activity Intervention After Total Knee Replacement. Arthritis Care Res. 2020; 72(5):661-668. [31] CROTEAU KA, RICHESON NE, VINES SW, et al. Effects of a Pedometer-Based Physical Activity Program on Older Adults’ Mobility-Related Self-Efficacy and Physical Performance. Act Adapt Aging. 2004;28(2):19-33. [32] CROTEAU KA, RICHESON NE, FARMER BC, et al. Effect of a pedometer-based intervention on daily step counts of community-dwelling older adults. Res Q Exerc Sport. 2007;78:401-406. [33] CRUZ J, BROOKS D, MARQUES A. Walk2Bactive: A randomized controlled trial of a physical activity-focused behavioural intervention beyond pulmonary rehabilitation in chronic obstructive pulmonary disease. Chron Respir Dis. 2016; 13(1):57-66. [34] DE BLOK BM, DE GREEF MHG, TEN HACKEN NHT, et al. The effects of a lifestyle physical activity counseling program with feedback of a pedometer during pulmonary rehabilitation in patients with COPD: a pilot study. Patient Educ Couns. 2006;61(1):48-55. [35] DEMEYER H, LOUVARIS Z, FREI A, et al. Physical activity is increased by a 12-week semiautomated telecoaching programme in patients with COPD: a multicentre randomised controlled trial. Thorax. 2017; 72(5):415-423. [36] GOLSTEIJN RHJ, BOLMAN C, VOLDERS E, et al. Short-term efficacy of a computer-tailored physical activity intervention for prostate and colorectal cancer patients and survivors: a randomized controlled trial. Int J Behav Nutr Phys Act. 2018;15(1):106. [37] HARRIS T, KERRY SM, VICTOR CR, et al. A primary care nurse-delivered walking intervention in older adults: PACE (pedometer accelerometer consultation evaluation)-Lift cluster randomised controlled trial. PLoS Med. 2015;12(2):e1001783. [38] HIRASE T, INOKUCHI S, KOSHIKAWA S, et al. Preventive effect of an intervention program with increased physical activity on the development of musculoskeletal pain in community-dwelling older adults: A randomized controlled trial. Pain Med (Malden, Mass). 2022;28(3):581-593. [39] HOSPES G, BOSSENBROEK L, TEN HACKEN NHT, et al. Enhancement of daily physical activity increases physical fitness of outclinic COPD patients: results of an exercise counseling program. Patient Educ Couns. 2009;75(2):274-281. [40] HUEBSCHMANN AG, GLASGOW RE, LEAVITT IM, et al. Integrating a physical activity coaching intervention into diabetes care: a mixed-methods evaluation of a pilot pragmatic trial. Transl Behav Med. 2022; 12(4):601-610. [41] KAREN AC, NANCY ER, SUSAN WV, et al. Effects of a pedometer-based physical activity program on older adults’ mobility-related self-efficacy and physical performance. Act Adapt Aging. 2004;28:2. [42] KENFIELD SA, VAN BLARIGAN EL, AMELI N, et al. Feasibility, Acceptability, and Behavioral Outcomes from a Technology-enhanced Behavioral Change Intervention (Prostate 8): A Pilot Randomized Controlled Trial in Men with Prostate Cancer. Eur Urol. 2019;75(6):950-958. [43] KERR J, ROSENBERG D, MILLSTEIN RA, et al. Cluster randomized controlled trial of a multilevel physical activity intervention for older adults. Int J Behav Nutr Phys Act. 2018;15(1):32-47. [44] KOHLBRENNER D, SIEVI NA, SENN O, et al. Long-term effects of pedometer-based physical activity coaching in severe copd: A randomized controlled trial. Int J COPD. 2020;15:2837-2846. [45] KOIZUMI D, ROGERS NL, ROGERS ME, et al. Efficacy of an accelerometer-guided physical activity intervention in community-dwelling older women. J Phys Act Health. 2009;6(4):467-474. [46] LARA J, O’BRIEN N, GODFREY A, et al. Pilot randomised controlled trial of a web-based intervention to promote healthy eating, physical activity and meaningful social connections compared with usual care control in people of retirement age recruited from workplaces. PLoS One. 2016;11(7):292-308. [47] LESKINEN T, SUORSA K, TUOMINEN M, et al. The Effect of Consumer-based Activity Tracker Intervention on Physical Activity among Recent Retirees-An RCT Study. Med Sci Sports Exerc. 2021;53(8):1756-1765. [48] LEWIS ZH, OTTENBACHER KJ, FISHER SR, et al. Effect of electronic activity monitors and pedometers on health: Results from the TAME health pilot randomized pragmatic trial. Int J Environ Res Public Health. 2020;17:18. [49] LI LC, FEEHAN LM, XIE H, et al. Effects of a 12-Week Multifaceted Wearable-Based Program for People With Knee Osteoarthritis: Randomized Controlled Trial. JMIR Mhealth Uhealth. 2020;8(7):e19116. [50] LIU JYW, KWAN RYC, YIN YH, et al. Enhancing the physical activity levels of frail older adults with a wearable activity tracker-based exercise intervention: A pilot cluster randomized controlled trial. Int J Environ Res Public Health. 2021;18(19):781-795. [51] LYNCH BM, NGUYEN NH, MOORE MM, et al. A randomized controlled trial of a wearable technology-based intervention for increasing moderate to vigorous physical activity and reducing sedentary behavior in breast cancer survivors: The ACTIVATE Trial. Cancer. 2019;125(16):2846-2855. [52] MACKEY DC, PERKINS AD, TAI K H, et al. Men on the move: A randomized controlled feasibility trial of a scalable, choice-based, physical activity and active transportation intervention for older men. J Aging Phys Act. 2019;27(4):489-502. [53] MENDOZA L, HORTA P, ESPINOZA J, et al. Pedometers to enhance physical activity in COPD: A randomised controlled trial. Eur Respir J. 2015;45(2):347-354. [54] MUTRIE N, DOOLIN O, FITZSIMONS CF, et al. Increasing older adults’ walking through primary care: results of a pilot randomized controlled trial. Fam Pr. 2012;29(6):633-642. [55] MIYAMOTO T, FUKUDA K, OSHIMA Y, et al. Non-locomotive physical activity intervention using a tri-axial accelerometer reduces sedentary time in type 2 diabetes. Phys Sportsmed. 2017;45(3):245-251. [56] NISHIGUCHI S, YAMADA M, TANIGAWA T, et al. A 12-Week Physical and Cognitive Exercise Program Can Improve Cognitive Function and Neural Efficiency in Community-Dwelling Older Adults: A Randomized Controlled Trial. J Am Geriatr Soc. 2015;63(7):1355-1363. [57] OLIVEIRA JS, SHERRINGTON C, PAUL SS, et al. A combined physical activity and fall prevention intervention improved mobility-related goal attainment but not physical activity in older adults: a randomised trial. J Physiother. 2019;65(1):16-22. [58] PETERSEN CB, SEVERIN M, HANSEN AW, et al. A population-based randomized controlled trial of the effect of combining a pedometer with an intervention toolkit on physical activity among individuals with low levels of physical activity or fitness. Prev Med. 2012;54:125-130. [59] ROBINSON SA, COOPER JAJR, GOLDSTEIN RL, et al. A randomised trial of a web-based physical activity self-management intervention in COPD. ERJ Open Res. 2021; 7(3):461-472. [60] ROWLEY TW, LENZ EK, SWARTZ AM, et al. Efficacy of an individually tailored, Internet-mediated physical activity intervention in older adults: A randomized controlled trial. J Appl Gerontol. 2019;38:1011-1022. [61] ROSSEN J, HAGSTROMER M, YNGVE A, et al. Process evaluation of the Sophia Step Study- a primary care based three-armed randomized controlled trial using self-monitoring of steps with and without counseling in prediabetes and type 2 diabetes. BMC Public Health. 2021;21(1):1191-1203. [62] HARRIS T, KERRY SM, LIMB ES, et al. Effect of a primary care walking intervention with and without nurse support on physical activity levels in 45- to 75-year-olds: The pedometer and consultation evaluation (PACE-UP) cluster randomised clinical trial. Plos Med. 2017;14:e1002210. [63] VARAS AB, CORDOBA S, RODRIGUEZ-ANDONAEGUI I, et al. Effectiveness of a community-based exercise training programme to increase physical activity level in patients with chronic obstructive pulmonary disease: A randomized controlled trial. Physiother Res Int. 2018;23(4):e1740. [64] YATES T, DAVIES M, GORELY T, et al. Effectiveness of a pragmatic education program designed to promote walking activity in individuals with impaired glucose tolerance: a randomized controlled trial. Diabetes Care. 2009;32(8):1404-1410. [65] YATES T, DAVIES MJ, GORELY T, et al. The effect of increased ambulatory activity on markers of chronic low-grade inflammation: evidence from the PREPARE programme randomized controlled trial. Diabet Med. 2010;27(11):1256-1263. [66] LI C, CHEN X, BI X. Wearable activity trackers for promoting physical activity: A systematic meta-analytic review. Int J Med Inform. 2021;152(5):104487-104498. [67] WU S, LI G, DU L, et al. The effectiveness of wearable activity trackers for increasing physical activity and reducing sedentary time in older adults: A systematic review and meta-analysis. Digit Health. 2023;9: 1-13. [68] 王从江.体育锻炼对我国普通大学生抑郁症影响的Meta分析[J].成都体育学院学报,2014,40(3):75-79. [69] DEBRAY TPA, MOONS KGM, RILEY RD. Detecting small-study effects and funnel plot asymmetry in meta-analysis of survival data: A comparison of new and existing tests. Res Synth Methods. 2018; 9(1):41-50. [70] ROBERTS AL, FISHER A, SMITH L, et al. Digital health behaviour change interventions targeting physical activity and diet in cancer survivors: a systematic review and meta-analysis. J Cancer Surviv. 2017;11(6): 704-719. [71] SAINT-MAURICE PF, TROIANO RP, BASSETT DRJR, et al. Association of Daily Step Count and Step Intensity With Mortality Among US Adults. JAMA. 2020;323(12):1151-1160. [72] D’AMORE C, REID JC, CHAN M, et al. Interventions Including Smart Technology Compared With Face-to-face Physical Activity Interventions in Older Adults: Systematic Review and Meta-analysis. J Med Internet Res. 2022;24(10):e36134. [73] LIU JY, KOR PP, CHAN CP, et al. The effectiveness of a wearable activity tracker (WAT)-based intervention to improve physical activity levels in sedentary older adults: A systematic review and meta-analysis. Arch Gerontol Geriatr. 2020;91:104211-104230. [74] EKELUND U, TARP J, FAGERLAND MW, et al. Joint associations of accelero-meter measured physical activity and sedentary time with all-cause mortality: a harmonised meta-analysis in more than 44 000 middle-aged and older individuals. Br J Sports Med. 2020;54(24):1499-1506. [75] MEH K, SEMBER V, SORIC M, et al. The dilemma of physical activity questionnaires: Fitter people are less prone to over reporting. PLos One. 2023;18(8):e0285357. [76] MICHIE S, RICHARDSON M, JOHNSTON M, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46(1):81-95. [77] GAO Z, RYU S, ZHOU W, et al. Effects of personalized exercise prescriptions and social media delivered through mobile health on cancer survivors’ physical activity and quality of life. J Sport Health Sci. 2023; 12(6):705-714. [78] ISLAM KF, AWAL A, MAZUMDER H, et al. Social cognitive theory-based health promotion in primary care practice: A scoping review. Heliyon. 2023;9(4):e14889. [79] ZUBALA A, MACGILLIVRAY S, FROST H, et al. Promotion of physical activity interventions for community dwelling older adults: A systematic review of reviews. PLoS One. 2017;12(7):e0180902 [80] AUERSWALD T, MEYER J, VON HOLDT K, et al. Application of Activity Trackers among Nursing Home Residents-A Pilot and Feasibility Study on Physical Activity Behavior, Usage Behavior, Acceptance, Usability and Motivational Impact. Int J Environ Res Public Health. 2020;17(18):6683-6704. [81] HODKINSON A, KONTOPANTELIS E, ADENIJI C, et al. Interventions Using Wearable Physical Activity Trackers Among Adults With Cardiometabolic Conditions: A Systematic Review and Meta-analysis. JAMA Netw Open. 2021;4(7):e2116382. [82] LARSEN RT, CHRISTENSEN J, JUHL CB, et al. Physical activity monitors to enhance amount of physical activity in older adults - a systematic review and meta-analysis. Eur Rev Aging Phys Act. 2019;16(1):7. [83] STOCLWELL S, SCHOFIELD P, FISHER A, et al. Digital behavior change interventions to promote physical activity and/or reduce sedentary behavior in older adults: A systematic review and meta-analysis. Exp Gerontol. 2019;120:68-87. |
[1] | 张新新, 高 克, 谢世栋, 陀浩雯, 经飞跃, 刘卫国. 非手术治疗慢性踝关节不稳者足踝功能和动态平衡能力的网状Meta分析[J]. 中国组织工程研究, 2025, 29(9): 1931-1944. |
[2] | 孙韫頔, 程露露, 万海丽, 常 赢, 熊雯娟, 夏 渊. 神经肌肉训练对膝骨关节炎患者疼痛和功能影响的Meta分析[J]. 中国组织工程研究, 2025, 29(9): 1945-1952. |
[3] | 张雨馨, 于 聪, 张 翠, 丁建军, 陈 岩. 轻度认知障碍老人与认知正常老人在不同单双任务下姿势控制能力的差异性[J]. 中国组织工程研究, 2025, 29(8): 1643-1649. |
[4] | 王艺达, 刘 君, 王晓玲, 王丽岩, 杨程茹, 张学晓. 基于可穿戴电子设备干预对健康青少年身体活动和久坐行为影响的Meta分析[J]. 中国组织工程研究, 2025, 29(8): 1693-1704. |
[5] | 张孜贤, 徐有粮, 吴绍奎, 王相英. 血流限制训练法联合抗阻训练对运动者肌肉相关指标影响的Meta分析[J]. 中国组织工程研究, 2025, 29(8): 1705-1713. |
[6] | 王 娟, 王广兰, 左会武. 运动疗法对前交叉韧带重建后康复疗效影响的网状Meta分析[J]. 中国组织工程研究, 2025, 29(8): 1714-1726. |
[7] | 郑华坤, 殷明越, 刘 骞. 间歇与持续训练对体力活动不足成人生活质量影响的Meta分析[J]. 中国组织工程研究, 2025, 29(8): 1727-1740. |
[8] | 李慧军, 李黄岩, 张业廷. 身体活动与老年人认知领域研究热点与主题演变[J]. 中国组织工程研究, 2025, 29(5): 1073-1080. |
[9] | 李 哲, 李 萍, 张 超, 郭广玲. 不同来源间充质干细胞治疗卵巢早衰动物模型疗效的网状Meta分析[J]. 中国组织工程研究, 2025, 29(36): 7898-7908. |
[10] | 王凯刚, 郝东升, 马 沛, 周 硕, 李睿敏. 对比不同生物支架用于年轻恒牙牙髓血运重建效果的贝叶斯网状Meta分析[J]. 中国组织工程研究, 2025, 29(34): 7447-7460. |
[11] | 王 贺, 于少泓, . 经颅直流电刺激改善脑卒中患者下肢运动功能障碍的Meta分析[J]. 中国组织工程研究, 2025, 29(30): 6556-6565. |
[12] | 王建磊 , 何培亮 , 孙永建. 下肢关节置换前糖皮质激素静脉注射对疗效及安全性影响的Meta分析[J]. 中国组织工程研究, 2025, 29(3): 599-607. |
[13] | 李 佳, 刘倩茹, 邢梦楠, 陈 波, 矫 玮, 孟兆祥. 不同运动类型对膝骨关节炎患者疗效的网状Meta分析[J]. 中国组织工程研究, 2025, 29(3): 609-616. |
[14] | 周琰杰, 曹春风, 张中卒, 牛 雄, 王 鑫, 杨再海, 周 亮, 李 波. 颈前路减压融合ROI-CTM自锁系统治疗退行性颈椎病的Meta分析[J]. 中国组织工程研究, 2025, 29(3): 617-627. |
[15] | 蒋思琪, 黄欢欢, 余馨雨, 彭 颖, 周 薇, 赵庆华. 运动改善社区居家老年肌少症患者肌肉健康剂量效应的Meta分析[J]. 中国组织工程研究, 2025, 29(29): 6295-6304. |
1.1.5 文献检索策略 由2名研究人员采用主题词结合自由词的方式进行系统检索,以PubMed数据库为例,见图1。
#br#
文题释义:
可穿戴设备:应用穿戴式技术对人们日常的穿戴进行智能化配置,可以用来客观测量用户日常身体活动,通过监视显示器或合作应用程序提供反馈的便携式设备。面对全球人口老龄化的挑战,促进老年人身体活动对于维持健康和减轻社会经济负担至关重要。然而,老年人常因多种障碍难以达到世界卫生组织推荐活动量。文章通过Meta分析首次全面评估了可穿戴设备干预的效果,为科学促进老年人身体活动提供了证据。研究结果显示,可穿戴设备干预显著提升了老年人的每日步数、中高强度身体活动、低强度身体活动和总身体活动水平。特别是,采用综合干预措施,结合计步器或加速度计,并控制在12周内的干预,对提高干预效果具有关键作用。尽管对减少久坐行为的效果尚需进一步研究,但研究结果为设计有效的老年人身体活动干预方案提供了循证支持,并为应对全球人口老龄化挑战提供了新的视角和策略。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||