[1] FACTOR D, DALE B. Current concepts of rotator cuff tendinopathy. Int J Sports Phys Ther. 2014;9(2):274-288.
[2] D’ADDONA A, MAFFULLI N, FORMISANO S, et al. Inflammation in tendinopathy. Surgeon. 2017;15(5):297-302.
[3] ABATE M, SILBERNAGEL KG, SILJEHOLM C, et al. Pathogenesis of tendinopathies: inflammation or degeneration? Arthritis Res Ther. 2009;11(3):235.
[4] DEAN BJF, DAKIN SG, MILLAR NL, et al. Review: Emerging concepts in the pathogenesis of tendinopathy. Surgeon. 2017;15(6):349-354.
[5] PFANNERf N, WARSCHEID B, WIEDEMANN N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 2019; 20(5):267-284.
[6] SUN K, JING X, GUO J, et al. Mitophagy in degenerative joint diseases. Autophagy. 2021;17(9):2082-2092.
[7] CHIAO YA, ZHANG H, SWEETWYNE M, et al. Late-life restoration of mitochondrial function reverses cardiac dysfunction in old mice. Elife. 2020;9:e55513.
[8] FINKEL T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194(1):7-15.
[9] ITOIGAWA Y, YOSHIDA K, NOJIRI H, et al. Association of recurrent tear after arthroscopic rotator cuff repair and superoxide-induced oxidative stress. Am J Sports Med. 2021;49(8):2048-2055.
[10] ACKERMANN PW, RENSTROM P. Tendinopathy in sport. Sports Health. 2012;4(3):193-201.
[11] DEL BUONO A, VOLPIN A, MAFFULLI N. Minimally invasive versus open surgery for acute Achilles tendon rupture: a systematic review. Br Med Bull. 2014;109:45-54.
[12] OLSSON N, SILLERNAGEL KG, ERIKSSON BI, et al. Stable surgical repair with accelerated rehabilitation versus nonsurgical treatment for acute Achilles tendon ruptures: a randomized controlled study. Am J Sports Med. 2013;41(12):2867-2876.
[13] OLSSON N, PETZOLD M, BRORSSON A, et al. Predictors of clinical outcome after acute achilles tendon ruptures. Am J Sports Med. 2014; 42(6):1448-1455.
[14] DAKIN SG, MARTINEZ FO, YAPP C, et al. Inflammation activation and resolution in human tendon disease. Sci Transl Med.2015;7(311):311ra173.
[15] ZHANG X, ELIASBERG CD, RODEO SA. Mitochondrial dysfunction and potential mitochondrial protectant treatments in tendinopathy. Ann N Y Acad Sci. 2021;1490(1):29-41.
[16] WANG S, YAO Z, ZHANG X, et al. Energy-supporting enzyme-mimic nanoscaffold facilitates tendon regeneration based on a mitochondrial protection and microenvironment remodeling strategy. Adv Sci (Weinh). 2022;9(31):e2202542. [17] ZHANG X, BOWEN E, ZHANG M, et al. SS-31 as a Mitochondrial protectant in the treatment of tendinopathy: evaluation in a murine supraspinatus tendinopathy model. J Bone Joint Surg Am. 2022; 104(21):1886-1894.
[18] ZHANG X, WADA S, ZHANG Y, et al. Assessment of Mitochondrial Dysfunction in a Murine Model of Supraspinatus Tendinopathy. J Bone Joint Surg Am. 2021;103(2):174-183.
[19] THANKAM FG, CHANDRA IS, KOVILAM AN, et al. Amplification of mitochondrial activity in the healing response following rotator cuff tendon injury. Sci Rep. 2018;8(1):17027.
[20] CHEN C, MAO WF, WU YF. The effects of hypoxia-reoxygenation in mouse digital flexor tendon-derived cells. Oxid Med Cell Longev. 2020; 2020:7305392.
[21] LIU YC, WANG HL, HUANG YZ, et al. Alda-1, an activator of ALDH2, ameliorates Achilles tendinopathy in cellular and mouse models. Biochem Pharmacol. 2020;175:113919.
[22] ABATE M, DI CARLO L, COCCO G, et al. Oxidative stress and abnormal tendon sonographic features in elite soccer players (a pilot study). Rev Bras Ortop (Sao Paulo). 2021;56(4):432-437.
[23] FLUCK M, FITZE D, RUOSS S, et al. Down-regulation of mitochondrial metabolism after tendon release primes lipid accumulation in rotator cuff muscle. Am J Pathol. 2020;190(7):1513-1529.
[24] BENSON RT, MCDONNELL SM, KNOWLES HJ, et al. Tendinopathy and tears of the rotator cuff are associated with hypoxia and apoptosis. J Bone Joint Surg Br. 2010;92(3):448-453.
[25] 陈墨龙,陈万,唐康来.过度机械拉伸应力通过Piezo1介导肌腱细胞凋亡的作用及机制研究[J].陆军军医大学学报,2023,45(10):1040-1049.
[26] STILL C 2ND, CHANG WT, SHERMAN SL, et al. Single-cell transcriptomic profiling reveals distinct mechanical responses between normal and diseased tendon progenitor cells. Cell Rep Med. 2021;2(7):100343.
[27] COOK JL, PURDAM C. Is compressive load a factor in the development of tendinopathy? Br J Sports Med. 2012;46(3):163-168.
[28] CHEN H, CHEN L, CHENG B, et al. Cyclic mechanical stretching induces autophagic cell death in tenofibroblasts through activation of prostaglandin E2 production. Cell Physiol Biochem. 2015;36(1):24-33.
[29] WEI B, JI M, LIN Y, et al. Mitochondrial transfer from bone mesenchymal stem cells protects against tendinopathy both in vitro and in vivo. Stem Cell Res Ther. 2023;14(1):104.
[30] CHEN Z, LI M, CHEN P, et al. Mechanical overload-induced release of extracellular mitochondrial particles from tendon cells leads to inflammation in tendinopathy. Exp Mol Med. 2024;56(3):583-599.
[31] ZHANG J, LI F, NIE D, et al. Effect of metformin on development of tendinopathy due to mechanical overloading in an animal model. Foot Ankle Int. 2020;41(12):1455-1465.
[32] LIANG M, CORNELL HR, ZARGAR BABOLDASHTI N, et al. Regulation of hypoxia-induced cell death in human tenocytes. Adv Orthop. 2012; 2012:984950.
[33] MILLAR NL, REILLY JH, KERR SC, et al. Hypoxia: a critical regulator of early human tendinopathy. Ann Rheum Dis. 2012;71(2):302-310.
[34] LEE JM, HWANG JW, KIM MJ, et al. Mitochondrial transplantation modulates inflammation and apoptosis, alleviating tendinopathy both in vivo and in vitro. Antioxidants (Basel). 2021;10(5):696.
[35] LOWES DA, WALLACE C, MURPHY MP, et al. The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative stress and mitochondrial membrane damage in human Achilles tendon cells. Free Radic Res. 2009;43(4):323-328.
[36] BISACCIA DR, AICALE R, TARANTINO D, et al. Biological and chemical changes in fluoroquinolone-associated tendinopathies: a systematic review. Br Med Bull. 2019;130(1):39-49.
[37] KAUR K, FAYAD R, SAXENA A, et al. Fluoroquinolone-related neuropsychiatric and mitochondrial toxicity: a collaborative investigation by scientists and members of a social network. J Community Support Oncol. 2016;14(2):54-65.
[38] GOLOMB BA, KOSLIK HJ, REDD AJ. Fluoroquinolone-induced serious, persistent, multisymptom adverse effects. BMJ Case Rep. 2015; 2015:bcr2015209821.
[39] PATEL SH, YUE F, SAW SK, et al. Advanced glycation end-products suppress mitochondrial function and proliferative capacity of achilles tendon-derived fibroblasts. Sci Rep. 2019;9(1):12614.
[40] MIFUNE Y, INUI A, MUTO T, et al. Influence of advanced glycation end products on rotator cuff. J Shoulder Elbow Surg. 2019;28(8):1490-1496.
[41] WANG Y, TANG H, HE G, et al. High concentration of aspirin induces apoptosis in rat tendon stem cells via inhibition of the wnt/β-catenin pathway. Cell Physiol Biochem. 2018;50(6):2046-2059.
[42] 王雲蛟.阿司匹林对肌腱干细胞和肌腱病损伤修复的作用和机制研究[D].重庆:中国人民解放军陆军军医大学,2020.
[43] ICHISEKI T, UEDA S, UEDA Y, et al. Age-related changes of mitochondrial transcription factor a expression in rotator cuff degeneration. Am J Transl Res. 2015;7(10):2099-2104.
[44] ZHANG Y, LU S, YU G, et al. NAMPT-Improved mitochondrial function alleviates degenerative rotator cuff tendinopathy in aged mice. J Bone Joint Surg Am. 2023;105(19):1502-1511.
[45] LI W, SAUVE AA. NAD⁺ content and its role in mitochondria. Methods Mol Biol. 2015;1241:39-48.
[46] ZHANG H, RYU D, WU Y, et al. NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016; 352(6292):1436-1443.
[47] WANG X, DENG M, YU Z, et al. Cell-free fat extract accelerates diabetic wound healing in db/db mice. Am J Transl Res. 2020;12(8):4216-4227.
[48] HAO Y, LI W, ZHOU X, et al. Microneedles-based transdermal drug delivery systems: a review. J Biomed Nanotechnol. 2017;13(12):1581-1597.
[49] SARTAWI Z, BLACKSHIELDS C, FAISAL W. Dissolving microneedles: applications and growing therapeutic potential. J Control Release. 2022;348:186-205.
[50] KAN T, RAN Z, SUN L, et al. Cell-free fat extract-loaded microneedles attenuate inflammation-induced apoptosis and mitochondrial damage in tendinopathy. Mater Today Bio. 2023;22:100738.
[51] MITCHELL W, NG EA, TAMUCCI JD, et al. The mitochondria-targeted peptide SS-31 binds lipid bilayers and modulates surface electrostatics as a key component of its mechanism of action. J Biol Chem. 2020; 295(21):7452-7469.
[52] BIRK AV, LIU S, SOONG Y, et al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol. 2013;24(8):1250-1261.
[53] HASAN SS. Do the ends justify the means? Commentary on an article by Xueying Zhang, BS, et al.: “Assessment of mitochondrial dysfunction in a murine model of supraspinatus tendinopathy”. J Bone Joint Surg Am. 2021;103(2):e7.
[54] ZHANG X, ZHANG Y, ZHANG M, et al. Evaluation of SS-31 as a potential strategy for tendinopathy treatment: an in vitro model. Am J Sports Med. 2022;50(10):2805-2816.
[55] SZETO HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol. 2014;171(8):2029-2050.
[56] FAKRUDDIN M, WEI FY, SUZUKI T, et al. Defective mitochondrial trna taurine modification activates global proteostress and leads to mitochondrial disease. Cell Rep. 2018;22(2):482-496.
[57] WANG Q, FAN W, CAI Y, et al. Protective effects of taurine in traumatic brain injury via mitochondria and cerebral blood flow. Amino Acids. 2016;48(9):2169-2177.
[58] HIRATA H, UEDA S, ICHISEKI T, et al. Taurine inhibits glucocorticoid-induced bone mitochondrial injury, preventing osteonecrosis in rabbits and cultured osteocytes. Int J Mol Sci. 2020;21(18):6892.
[59] UEDA S, ICHISEKI T, SHIMASAKI M, et al. Inhibitory effect of taurine on rotator cuff degeneration via mitochondrial protection. Am J Transl Res. 2022;14(9):6286-6294.
[60] MACHOVA URDZIKOVA L, SEDLACEK R, SUCHY T, et al. Human multipotent mesenchymal stem cells improve healing after collagenase tendon injury in the rat. Biomed Eng Online. 2014;13:42.
[61] COVARRUBIAS AJ, PERRONE R, GROZIO A, et al. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119-141.
[62] KRISHNAN SG. Can we change the natural history of rotator cuff tendon degeneration? a look into the future: commentary on an article by Yao Zhang, MD, et al.: “NAMPT-improved mitochondrial function alleviates degenerative rotator cuff tendinopathy in aged mice”. J Bone Joint Surg Am. 2023;105(19):e49.
|