中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (20): 4266-4275.doi: 10.12307/2025.692
• 组织构建综述 tissue construction review • 上一篇 下一篇
收稿日期:
2024-07-27
接受日期:
2024-09-14
出版日期:
2025-07-18
发布日期:
2024-12-20
通讯作者:
夏鹏,博士,副教授,博士生导师,吉林大学第二医院脊柱外科,吉林省长春市 130000
作者简介:
魏鹤翔,男,1998年生,山东省滨州市人,汉族,吉林大学在读硕士,主要从事骨修复和骨整合研究。
基金资助:
Wei Hexiang, Sun Bin, Liu Hao, Liu Hanqiang, Xia Peng
Received:
2024-07-27
Accepted:
2024-09-14
Online:
2025-07-18
Published:
2024-12-20
Contact:
Xia Peng, MD, Associate professor, Doctoral supervisor, Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
About author:
Wei Hexiang, Master’s candidate, Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
Supported by:
摘要:
文题释义:
神经生长因子:一种广泛分布于人体各组织中的蛋白质,主要作用为调控神经元生长、存活、分化,同时也在包括骨骼、血管在内的非神经组织中起关键调控作用。
骨再生:骨骼具有完全再生能力,新生成骨组织与正常骨组织没有区别。这种完全再生能力由成骨细胞、破骨细胞等多种骨组织细胞和长入愈伤组织的神经、血管共同实现。
背景:神经生长因子在骨骼的生理和病理进程中发挥了重要作用,系统性分析神经生长因子对骨组织的影响在组织工程及临床治疗两方面都具有重要意义。
目的:探究神经生长因子通过骨组织细胞和骨神经-血管耦合等途径调控骨形成的过程,同时研究神经生长因子在骨相关疾病病理进程中的作用。
方法:在中国知网、万方、PubMed数据库以“神经生长因子,TrkA,骨,软骨”为中文检索词,以“Nerve growth factor,TrkA,NGF,bone,cartilage”为英文检索词进行文献检索,共检索到2 925篇文献。经过筛选后纳入116篇文献进行归纳总结,撰写综述。
结果与结论:神经生长因子既可在骨、软骨、神经、血管等组织细胞中表达,又可作用于这些细胞发挥调控作用。通过多种分泌调控方式,神经生长因子在骨组织内部和骨、神经、血管组织间发挥信号传导作用。通过促进骨髓间充质干细胞的增殖、分化,神经生长因子可促进骨形成及骨修复。神经生长因子介导的破骨细胞生成说明其对骨组织具有多向调控作用。同时,神经生长因子与多种骨科疾病的发生发展高度相关,可能提供新的临床治疗思路。对神经生长因子的研究是了解骨骼生理及病理变化的重要方向之一。
https://orcid.org/0000-0003-0793-2217(夏鹏)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
魏鹤翔, 孙 彬, 刘 昊, 刘含强, 夏 鹏. 神经生长因子对骨骼形成及骨疾病的影响[J]. 中国组织工程研究, 2025, 29(20): 4266-4275.
Wei Hexiang, Sun Bin, Liu Hao, Liu Hanqiang, Xia Peng. Effects of nerve growth factor on osteogenesis and bone diseases[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(20): 4266-4275.
[1] QIN Q, LEE S, PATEL N, et al. Neurovascular coupling in bone regeneration. Exp Mol Med. 2022;54(11):1844-1849. [2] ROCCO ML, SOLIGO M, MANNI L, et al. Nerve Growth Factor: Early Studies and Recent Clinical Trials. Curr Neuropharmacol. 2018;16(10): 1455-1465. [3] ZHENG XQ, HUANG J, LIN JL, et al. Pathophysiological mechanism of acute bone loss after fracture. J Adv Res. 2023;49:63-80. [4] SUN R, BAI L, YANG Y, et al. Nervous System-Driven Osseointegration. Int J Mol Sci. 2022;23(16):8893. [5] STABILE AM, PISTILLI A, BARTOLINI D, et al. Short-Term Effects of Side-Stream Smoke on Nerve Growth Factor and Its Receptors TrKA and p75NTR in a Group of Non-Smokers. Int J Environ Res Public Health. 2022;19(16):10317. [6] STABILE AM, PISTILLI A, MORETTI E, et al. A Possible Role for Nerve Growth Factor and Its Receptors in Human Sperm Pathology. Biomedicines. 2023;11(12):3345. [7] TONI T, DUA P, VAN DER GRAAF PH. Systems Pharmacology of the NGF Signaling Through p75 and TrkA Receptors. CPT Pharmacometrics Syst Pharmacol. 2014;3(12):e150. [8] CONROY JN, COULSON EJ. High-affinity TrkA and p75 neurotrophin receptor complexes: A twisted affair. J Biol Chem. 2022;298(3):101568. [9] MASON AJ, KEELER AB, KABIR F, et al. Sympathetic neurons secrete retrogradely transported TrkA on extracellular vesicles. Sci Rep. 2023;13(1):3657. [10] KRAEMER BR, YOON SO, CARTER BD. The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb Exp Pharmacol. 2014;220:121-164. [11] SAJANTI A, LYNE SB, GIRARD R, et al. A comprehensive p75 neurotrophin receptor gene network and pathway analyses identifying new target genes. Sci Rep. 2020;10(1):14984. [12] FRANCO ML, NADEZHDIN KD, LIGHT TP, et al. Interaction between the transmembrane domains of neurotrophin receptors p75 and TrkA mediates their reciprocal activation. J Biol Chem. 2021;297(2):100926. [13] MEEKER RB, WILLIAMS KS. The p75 neurotrophin receptor: at the crossroad of neural repair and death. Neural Regen Res. 2015;10(5): 721-725. [14] MOGI M, KONDO A, KINPARA K, et al. Anti-apoptotic action of nerve growth factor in mouse osteoblastic cell line. Life Sci. 2000;67(10): 1197-1206. [15] MONTAGNOLI C, TIRIBUZI R, CRISPOLTONI L, et al. β-NGF and β-NGF receptor upregulation in blood and synovial fluid in osteoarthritis. Biol Chem. 2017;398(9):1045-1054. [16] MINNONE G, DE BENEDETTI F, BRACCI-LAUDIERO L. NGF and Its Receptors in the Regulation of Inflammatory Response. Int J Mol Sci. 2017;18(5):1028. [17] SAMARIO-ROMÁN J, LARQUÉ C, PÁNICO P, et al. NGF and Its Role in Immunoendocrine Communication during Metabolic Syndrome. Int J Mol Sci. 2023;24(3):1957. [18] OHASHI Y, UCHIDA K, FUKUSHIMA K, et al. NGF Expression and Elevation in Hip Osteoarthritis Patients with Pain and Central Sensitization. Biomed Res Int. 2021;2021:9212585. [19] WANG L, ZHOU S, LIU B, et al. Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J Orthop Res. 2006;24(12):2238-2245. [20] GRILLS BL, SCHUIJERS JA, WARD AR. Topical application of nerve growth factor improves fracture healing in rats. J Orthop Res. 1997;15(2):235-242. [21] LI Z, MEYERS CA, CHANG L, et al. Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest. 2019;129(12):5137-5150. [22] DAMIATI LA, EL SOURY M. Bone-nerve crosstalk: a new state for neuralizing bone tissue engineering-A mini review. Front Med (Lausanne). 2024;11:1386683. [23] 刘国铭,王钦奋,林克凤,等.全身应用神经生长因子对大鼠胫骨干骨折早期愈合作用及骨形态发生蛋白2和血管内皮生长因子表达的影响[J].中国组织工程研究,2020,24(29):4680-4685. [24] PARKER RS, NAZZAL MK, MORRIS AJ, et al. Role of the Neurologic System in Fracture Healing: An Extensive Review. Curr Osteoporos Rep. 2024;22(1):205-216. [25] 王裕祥,王卫东,杨应忠,等.NGF、转化生长因子β1、成纤维细胞生长因子在骨折愈合中的作用效果分析[J].湖南师范大学学报(医学版),2018,15(3):95-98. [26] WRIGHT CS, LEWIS KJ, SEMON K, et al. Deletion of the auxiliary α2δ1 voltage sensitive calcium channel subunit in osteocytes and late-stage osteoblasts impairs femur strength and load-induced bone formation in male mice. J Bone Miner Res. 2024;39(3):298-314. [27] BONINI M, FIORETTI D, SARGENTINI V, et al. Increased nerve growth factor serum levels in top athletes. Clin J Sport Med. 2013;23(3): 228-231. [28] RAJPAR I, KUMAR G, FORTINA P, et al. Toll-like receptor 4 signaling in osteoblasts is required for load-induced bone formation in mice. iScience. 2023;26(4):106304. [29] FIORAVANTI G, HUA PQ, TOMLINSON RE. The TrkA agonist gambogic amide augments skeletal adaptation to mechanical loading. Bone. 2021;147:115908. [30] TOMLINSON RE, LI Z, LI Z, et al. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci U S A. 2017;114(18):E3632-E3641. [31] YANG S, LIU H, LIU Y, et al. Effect of adiponectin secreted from adipose-derived stem cells on bone-fat balance and bone defect healing. J Tissue Eng Regen Med. 2019;13(11):2055-2066. [32] ZHA K, TAN M, HU Y, et al. Regulation of metabolic microenvironment with a nanocomposite hydrogel for improved bone fracture healing. Bioact Mater. 2024;37:424-438. [33] GHASEMI M, TALEBI A, GHANBARI A, et al. Bone marrow stromal cell-conditioned medium regenerates injured sciatic nerve by increasing expression of MPZ and NGF and decreasing apoptosis. Iran J Basic Med Sci. 2024;27(5):596-602. [34] AL-MASSRI KF, AHMED LA, EL-ABHAR HS. Mesenchymal stem cells in chemotherapy-induced peripheral neuropathy: A new challenging approach that requires further investigations. J Tissue Eng Regen Med. 2020;14(1):108-122. [35] BRAZILL JM, BEEVE AT, CRAFT CS, et al. Nerves in Bone: Evolving Concepts in Pain and Anabolism. J Bone Miner Res. 2019;34(8): 1393-1406. [36] 崔国胜,曾剑玉,张婧,等.神经生长因子对2型糖尿病小鼠骨髓基质细胞体外成骨能力的影响[J].中华口腔医学杂志,2018, 53(2):97-102. [37] FANG CN, TAN HQ, SONG AB, et al. NGF/TrkA promotes the vitality, migration and adhesion of bone marrow stromal cells in hypoxia by regulating the Nrf2 pathway. Metab Brain Dis. 2022;37(6):2017-2026. [38] YE J, GONG P. NGF-CS/HA-coating composite titanium facilitates the differentiation of bone marrow mesenchymal stem cells into osteoblast and neural cells. Biochem Biophys Res Commun. 2020;531(3):290-296. [39] AN J, SHI X, ZHANG J, et al. Dual aldehyde cross-linked hyaluronic acid hydrogels loaded with PRP and NGF biofunctionalized PEEK interfaces to enhance osteogenesis and vascularization. Mater Today Bio. 2023; 24:100928. [40] HUANG M, ZHOU J, LI X, et al. Mechanical protein polycystin-1 directly regulates osteoclastogenesis and bone resorption. Sci Bull (Beijing). 2024;69(12):1964-1979. [41] KONNO T, MURACHI H, OTSUKA K, et al. Ctdnep1 phosphatase is required for negative regulation of RANKL-induced osteoclast differentiation in RAW264.7 cells. Biochem Biophys Res Commun. 2024;719:150063.
[42] DELAY L, BARBIER J, AISSOUNI Y, et al. Tyrosine kinase type A-specific signalling pathways are critical for mechanical allodynia development and bone alterations in a mouse model of rheumatoid arthritis. Pain. 2022;163(7):e837-e849. [43] ZHANG Z, WANG F, HUANG X, et al. Engineered Sensory Nerve Guides Self-Adaptive Bone Healing via NGF-TrkA Signaling Pathway. Adv Sci (Weinh). 2023;10(10):e2206155. [44] MELONI M, CESSELLI D, CAPORALI A, et al. Cardiac Nerve Growth Factor Overexpression Induces Bone Marrow-derived Progenitor Cells Mobilization and Homing to the Infarcted Heart. Mol Ther. 2015; 23(12):1854-1866. [45] XIE G, HUANG C, JIANG S, et al. Smoking and osteoimmunology: Understanding the interplay between bone metabolism and immune homeostasis. J Orthop Translat. 2024;46:33-45. [46] FENG W, GUO J, LI M. RANKL-independent modulation of osteoclastogenesis. J Oral Biosci. 2019;61(1):16-21. [47] HEMINGWAY F, TAYLOR R, KNOWLES HJ, et al. RANKL-independent human osteoclast formation with APRIL, BAFF, NGF, IGF I and IGF II. Bone. 2011;48(4):938-944. [48] XU L, NWOSU LN, BURSTON JJ, et al. The anti-NGF antibody muMab 911 both prevents and reverses pain behaviour and subchondral osteoclast numbers in a rat model of osteoarthritis pain. Osteoarthritis Cartilage. 2016;24(9):1587-1595. [49] SUN W, YE B, CHEN S, et al. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res. 2023;11(1):65. [50] LIU H, CHEN H, HAN Q, et al. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio. 2023;23:100858. [51] DIOMEDE F, MARCONI GD, FONTICOLI L, et al. Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration. Int J Mol Sci. 2020;21(9):3242. [52] ZHANG Z, HAO Z, XIAN C, et al. Neuro-bone tissue engineering: Multiple potential translational strategies between nerve and bone. Acta Biomater. 2022;153:1-12. [53] LEROUX A, PAIVA DOS SANTOS B, LENG J, et al. Sensory neurons from dorsal root ganglia regulate endothelial cell function in extracellular matrix remodelling. Cell Commun Signal. 2020;18(1):162. [54] LIAN M, QIAO Z, QIAO S, et al. Nerve Growth Factor-Preconditioned Mesenchymal Stem Cell-Derived Exosome-Functionalized 3D-Printed Hierarchical Porous Scaffolds with Neuro-Promotive Properties for Enhancing Innervated Bone Regeneration. ACS Nano. 2024;18(10):7504-7520. [55] AHLUWALIA A, JONES MK, BRZOZOWSKI T, et al. Nerve growth factor is critical requirement for in vitro angiogenesis in gastric endothelial cells. Am J Physiol Gastrointest Liver Physiol. 2016;311(5):G981-G987. [56] CANTARELLA G, LEMPEREUR L, PRESTA M, et al. Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J. 2002;16(10):1307-1309. [57] CAPORALI A, EMANUELI C. Cardiovascular actions of neurotrophins. Physiol Rev. 2009;89(1):279-308. [58] SUN S, DIGGINS NH, GUNDERSON ZJ, et al. No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing. Bone. 2020;131:115109. [59] LEE S, HWANG C, MARINI S, et al. NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma. Nat Commun. 2021;12(1):4939. [60] WANG H, HSU YC, WANG C, et al. Conductive and Enhanced Mechanical Strength of Mo2Ti2C3 MXene-Based Hydrogel Promotes Neurogenesis and Bone Regeneration in Bone Defect Repair. ACS Appl Mater Interfaces. 2024;16(14):17208-17218. [61] WANG X, ZHENG W, BAI Z, et al. Mimicking bone matrix through coaxial electrospinning of core-shell nanofibrous scaffold for improving neurogenesis bone regeneration. Biomater Adv. 2023;145:213246. [62] LI Q, LIU W, HOU W, et al. Micropatterned photothermal double-layer periosteum with angiogenesis-neurogenesis coupling effect for bone regeneration. Mater Today Bio. 2022;18:100536. [63] CHEN WH, MAO CQ, ZHUO LL, et al. Beta-nerve growth factor promotes neurogenesis and angiogenesis during the repair of bone defects. Neural Regen Res. 2015;10(7):1159-1165. [64] GAO X, MURPHY MM, PEYER JG, et al. Leptin receptor+ cells promote bone marrow innervation and regeneration by synthesizing nerve growth factor. Nat Cell Biol. 2023;25(12):1746-1757. [65] FUJII Y, LIU L, YAGASAKI L, et al. Cartilage Homeostasis and Osteoarthritis. Int J Mol Sci. 2022;23(11):6316. [66] SANG XG, WANG ZY, CHENG L, et al. Analysis of the mechanism by which nerve growth factor promotes callus formation in mice with tibial fracture. Exp Ther Med. 2017;13(4):1376-1380. [67] HASEEB A, KC R, ANGELOZZI M, et al. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation. Proc Natl Acad Sci U S A. 2021;118(8):e2019152118. [68] CHERIEF M, NEGRI S, QIN Q, et al. TrkA+ Neurons Induce Pathologic Regeneration After Soft Tissue Trauma. Stem Cells Transl Med. 2022; 11(11):1165-1176. [69] YU X, QI Y, ZHAO T, et al. NGF increases FGF2 expression and promotes endothelial cell migration and tube formation through PI3K/Akt and ERK/MAPK pathways in human chondrocytes. Osteoarthritis Cartilage. 2019;27(3):526-534. [70] DENK F, BENNETT DL, MCMAHON SB. Nerve Growth Factor and Pain Mechanisms. Annu Rev Neurosci. 2017;40:307-325. [71] ZHANG L, LI M, LI X, et al. Characteristics of sensory innervation in synovium of rats within different knee osteoarthritis models and the correlation between synovial fibrosis and hyperalgesia. J Adv Res. 2021;35:141-151. [72] FARINA L, MINNONE G, ALIVERNINI S, et al. Pro Nerve Growth Factor and Its Receptor p75NTR Activate Inflammatory Responses in Synovial Fibroblasts: A Novel Targetable Mechanism in Arthritis. Front Immunol. 2022;13:818630. [73] WALSH DA, MCWILLIAMS DF, TURLEY MJ, et al. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxford). 2010;49(10):1852-1861. [74] LIN CY, LEE KT, LIN YY, et al. NGF facilitates ICAM-1-dependent monocyte adhesion and M1 macrophage polarization in rheumatoid arthritis. Int Immunopharmacol. 2024;130:111733. [75] YU H, HUANG T, LU WW, et al. Osteoarthritis Pain. Int J Mol Sci. 2022; 23(9):4642. [76] NWOSU LN, MAPP PI, CHAPMAN V, et al. Blocking the tropomyosin receptor kinase A (TrkA) receptor inhibits pain behaviour in two rat models of osteoarthritis. Ann Rheum Dis. 2016;75(6):1246-1254.
[77] WALSH DA, NEOGI T. A tale of two TrkA inhibitor trials: same target, divergent results. Osteoarthritis Cartilage. 2019;27(11):1575-1577.
[78] PRENCIPE G, MINNONE G, STRIPPOLI R, et al. Nerve growth factor downregulates inflammatory response in human monocytes through TrkA. J Immunol. 2014;192(7):3345-3354. [79] WISE BL, SEIDEL MF, LANE NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021;17(1):34-46. [80] MENGES S, MICHAELIS M, KLEINSCHMIDT-DÖRR K. Anti-NGF treatment worsens subchondral bone and cartilage measures while improving symptoms in floor-housed rabbits with osteoarthritis. Front Physiol. 2023;14:1201328. [81] ZHAO L, LAI Y, JIAO H, et al. Nerve growth factor receptor limits inflammation to promote remodeling and repair of osteoarthritic joints. Nat Commun. 2024;15(1):3225. [82] ANTUNES BP, BECKER RG, BRUNETTO AT, et al. Expression of neurotrophins and their receptors in primary osteosarcoma. Rev Col Bras Cir. 2019;46(2):e2094. [83] HOU CH, CHEN WL, LIN CY. Targeting nerve growth factor-mediated osteosarcoma metastasis: mechanistic insights and therapeutic opportunities using larotrectinib. Cell Death Dis. 2024;15(5):381. [84] MCCAFFREY G, THOMPSON ML, MAJUTA L, et al. NGF blockade at early times during bone cancer development attenuates bone destruction and increases limb use. Cancer Res. 2014;74(23):7014-7023. [85] YONEDA T, HIASA M, OKUI T, et al. Sensory nerves: A driver of the vicious cycle in bone metastasis? J Bone Oncol. 2021;30:100387. [86] BLOOM AP, JIMENEZ-ANDRADE JM, TAYLOR RN, et al. Breast cancer-induced bone remodeling, skeletal pain, and sprouting of sensory nerve fibers. J Pain. 2011;12(6):698-711. [87] SHAN Q, TAKABATAKE K, KAWAI H, et al. Significance of cancer stroma for bone destruction in oral squamous cell carcinoma using different cancer stroma subtypes. Oncol Rep. 2022;47(4):81. [88] ZHANG Y, LI W, GUO S, et al. FBXO22 Mediates the NGF/TRKA Signaling Pathway in Bone Metastases in Prostate Cancer. Am J Pathol. 2023;193(9):1248-1266. [89] FAN Y, ZHANG B, DU X, et al. Regulating Tumorigenicity and Cancer Metastasis through TRKA Signaling. Curr Cancer Drug Targets. 2024; 24(3):271-287. [90] CARRINO JA, MCALINDON TE, SCHNITZER TJ, et al. Characterization of adverse joint outcomes in patients with osteoarthritis treated with subcutaneous tanezumab. Osteoarthritis Cartilage. 2023;31(12): 1612-1626. [91] TAHIR S, SADIK O, EZENWA V, et al. Various Doses of Tanezumab in the Management of Chronic Low Back Pain (CLBP): A Pooled Analysis of 4,514 Patients. Cureus. 2023;15(10):e46790. [92] LIN KJ, TURNER KC, HASSAN HE, et al. Population Pharmacokinetics of Fasinumab in Healthy Volunteers and Patients With Pain Due to Osteoarthritis of the Knee or Hip. Clin Pharmacol Drug Dev. 2024; 13(6):621-630. [93] 颜冰,戴文玲,刘吉华.神经病理性疼痛中神经生长因子的作用及其相关镇痛药物研发进展[J].药学进展,2019,43(2):111-117. [94] NENCINI S, RINGUET M, KIM DH, et al. Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain. Mol Pain. 2017;13:1744806917697011. [95] YONEDA T, HIASA M, OKUI T, et al. Cancer-nerve interplay in cancer progression and cancer-induced bone pain. J Bone Miner Metab. 2023;41(3):415-427. [96] YANG Y, YANG W, ZHANG R, et al. Peripheral Mechanism of Cancer-Induced Bone Pain. Neurosci Bull. 2024;40(6):815-830. [97] YANG H, WANG Y, ZHEN S, et al. AMPK activation attenuates cancer-induced bone pain by reducing mitochondrial dysfunction-mediated neuroinflammation. Acta Biochim Biophys Sin (Shanghai). 2023;55(3):460-471. [98] JING D, ZHAO Q, ZHAO Y, et al. Management of pain in patients with bone metastases. Front Oncol. 2023;13:1156618. [99] SEVCIK MA, GHILARDI JR, PETERS CM, et al. Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain. 2005;115(1-2): 128-141. [100] MARTYN JAJ, MAO J, BITTNER EA. Opioid Tolerance in Critical Illness. N Engl J Med. 2019;380(4):365-378. [101] RAPP AE, KRONER J, BAUR S, et al. Analgesia via blockade of NGF/TrkA signaling does not influence fracture healing in mice. J Orthop Res. 2015;33(8):1235-1241. [102] KAN BF, LIU XY, HAN MM, et al. Nerve Growth Factor/Tyrosine Kinase A Receptor Pathway Enhances Analgesia in an Experimental Mouse Model of Bone Cancer Pain by Increasing Membrane Levels of δ-Opioid Receptors. Anesthesiology. 2024;140(4):765-785. [103] 郑湘予,文建国,王福建,等.不同给药途径生长因子对坐骨神经再生的影响[J].中华小儿外科杂志,2013,34(7):539-542. [104] 杨冰,马天宇,马维.神经生长因子促进骨折愈合的研究进展[J].中国医学科学院学报,2020,42(4):546-551. [105] 朴美慧.后路减压内固定联合mNGF对老年胸腰椎骨折伴脊髓损伤患者脊髓功能及血清mRNA-124、Neuritin的影响[J].社区医学杂志,2022,20(16):912-918. [106] 李中华,张发元,王燕青,等.闭合复位髓内钉内固定联合鼠神经生长因子对胫骨开放性骨折患者血清BMP-2、BMP-7水平的影响[J].临床和实验医学杂志,2022,21(16):1729-1733. [107] 李奕奕,刘兴涛,李旭开.鼠神经生长因子联合早期微创内固定治疗在创伤性多发性肋骨骨折患者中的应用探讨[J].现代医学与健康研究电子杂志,2022,6(3):52-54. [108] 胡锋,洪芳,杨月太.神经生长因子联合抗氧化治疗肢骨折内固定术后骨折愈合、骨代谢及氧化应激反应程度的影响[J].临床和实验医学杂志,2022,21(8):842-846. [109] 姜乃顺.神经生长因子联合组合式外固定架治疗骨折不愈合的疗效观察[J].中国现代药物应用,2018,12(12):86-88. [110] ENOMOTO M, MANTYH PW, MURRELL J, et al. Anti-nerve growth factor monoclonal antibodies for the control of pain in dogs and cats. Vet Rec. 2019;184(1):23. [111] ANDRESEN T, NILSSON M, NIELSEN AK, et al. Intradermal Injection with Nerve Growth Factor: A Reproducible Model to Induce Experimental Allodynia and Hyperalgesia. Pain Pract. 2016;16(1):12-23. [112] SVENSSON P, WANG K, ARENDT-NIELSEN L, et al. Effects of NGF-induced muscle sensitization on proprioception and nociception. Exp Brain Res. 2008;189(1):1-10. [113] ALASTRA G, ALOE L, BALDASSARRO VA, et al. Nerve Growth Factor Biodelivery: A Limiting Step in Moving Toward Extensive Clinical Application? Front Neurosci. 2021;15:695592. [114] RIVERA KO, RUSSO F, BOILEAU RM, et al. Local injections of β-NGF accelerates endochondral fracture repair by promoting cartilage to bone conversion. Sci Rep. 2020;10(1):22241. [115] RIVERA KO, CUYLEAR DL, DUKE VR, et al. Encapsulation of β-NGF in injectable microrods for localized delivery accelerates endochondral fracture repair. Front Bioeng Biotechnol. 2023;11:1190371. [116] EDMONDS ME, CLARKE MB, NEWTON S, et al. Increased uptake of bone radiopharmaceutical in diabetic neuropathy. Q J Med. 1985; 57(224):843-855. |
[1] | 赖鹏宇, 梁 冉, 沈 山. 组织工程技术修复颞下颌关节:问题与挑战[J]. 中国组织工程研究, 2025, 29(在线): 1-9. |
[2] | 李加根, 陈跃平, 黄柯琪, 陈尚桐, 黄川洪. 线粒体自噬视域下的类风湿关节炎:多机器学习算法构建预测模型及验证并免疫调控分析[J]. 中国组织工程研究, 2025, 29(在线): 1-15. |
[3] | 张艺博, 卢健棋, 毛美玲, 庞 延, 董 礼, 杨尚冰, 肖 湘. 类风湿关节炎与冠状动脉粥样硬化的因果关系:GWAS数据库血清代谢物和炎症因子数据[J]. 中国组织工程研究, 2025, 29(在线): 1-9. |
[4] | 李良奎, 黄永灿, 王鹏, 于滨生. 颈椎前路椎体骨化物可控前移融合对后纵韧带骨化物和内植物影响的有限元分析[J]. 中国组织工程研究, 2025, 29(9): 1761-1767. |
[5] | 周金海, 李江伟, 王序全, 庄 颖, 赵 瑛, 杨渝勇, 王嘉嘉, 杨 阳, 周仕炼. 不同骨强度下全膝置换过程中发生股骨前皮质切迹的三维有限元分析[J]. 中国组织工程研究, 2025, 29(9): 1775-1782. |
[6] | 陈 曦, 汤 涛, 陈铜兵, 李 青, 张 文. 不同内固定系统治疗股骨转子间骨折的力学稳定性[J]. 中国组织工程研究, 2025, 29(9): 1783-1788. |
[7] | 黄浩波, 梁馨元, 叶国忠, 谢庆祥, 苏博源. 纤维带与无头加压螺钉治疗第1,2跖骨近端粉碎性骨折Lisfranc损伤[J]. 中国组织工程研究, 2025, 29(9): 1803-1809. |
[8] | 刘 琰, 王 铠, 吴 敏. 踝关节骨折术后踝穴冠状位角度波动与关节功能恢复的关系[J]. 中国组织工程研究, 2025, 29(9): 1820-1826. |
[9] | 张 浩, 王 清, 张 建, 李广州, 王高举. 后路C2-3固定结合顶棒置入与单纯后路C2-3固定治疗不稳定Hangman骨折的比较[J]. 中国组织工程研究, 2025, 29(9): 1848-1854. |
[10] | 苏林涛, 江剑峰, 马 俊, 黄亮亮, 雷昌宇, 韩尧政, 康 辉. O臂导航在椎弓根发育性狭窄胸腰椎骨折中的精准应用[J]. 中国组织工程研究, 2025, 29(9): 1855-1862. |
[11] | 马 驰, 王 宁, 陈 拥, 魏志晗, 刘逢纪, 朴成哲. 3D打印个体化截骨导板结合定制钢板在开放楔形胫骨高位截骨中的应用[J]. 中国组织工程研究, 2025, 29(9): 1863-1869. |
[12] | 高振洋, 曾秀安, 杨其兵, 寇贤帅, 王克竞, 厉 孟. 计算机模拟复位联合骨盆复位架治疗APC-Ⅲ型骨盆骨折[J]. 中国组织工程研究, 2025, 29(9): 1870-1875. |
[13] | 冯志萌, 孙 宁, 孙兆忠, 李岳飞, 刘昌震, 李 洒. 影像三维重建安全辅助单孔分体内镜治疗L5/S1极外侧腰椎间盘突出症[J]. 中国组织工程研究, 2025, 29(9): 1876-1882. |
[14] | 周佳俊, 马 飞, 冷叶波, 徐世财, 何宝强, 李 洋, 廖烨晖, 唐 强, 唐 超, 王 清, 钟德君. 全脊柱MRI评估骨质疏松患者椎体骨折的分布特点及临床意义[J]. 中国组织工程研究, 2025, 29(9): 1883-1889. |
[15] | 晋继明, 郝阳泉, 赵汝顺, 张玉婷, 姜永宏, 许 鹏, 鲁 超. 双髋关节MRI预测股骨头坏死塌陷风险[J]. 中国组织工程研究, 2025, 29(9): 1890-1896. |
1.2 纳入标准 ①题目和摘要与主题词相关的文献;②内容与神经生长因子、骨形成、骨疾病联系紧密,相关度高的文献。
1.4 质量评估与数据的提取 从数据库综合检索到2 925篇文献,按照纳入、排除标准进行初筛,排除重复、无参考意义、与主题无关的文献,初筛后纳入437篇文献,随后详细阅读全文进行进一步筛选,并通过引用文献进行检索增补,最终纳入116篇文献撰写综述。文献检索流程见图2。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||