[1] THOMSON JA, ITSKOVITZ-ELDOR J, SHAPIRO SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391): 1145-1147.
[2] MARTIN GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634-7638.
[3] EVANS MJ, KAUFMAN MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154-156.
[4] TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676.
[5] NICHOLS J, SMITH A. Naive and primed pluripotent states. Cell Stem Cell. 2009;4(6):487-492.
[6] BRONS IG, SMITHERS LE, TROTTER MW, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007;448(7150): 191-195.
[7] TESAR PJ, CHENOWETH JG, BROOK FA, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448(7150):196-199.
[8] KINOSHITA M, BARBER M, MANSFIELD W, et al. Capture of mouse and human stem cells with features of formative pluripotency. Cell Stem Cell. 2021;28(3):453-471.e458.
[9] SPERBER H, MATHIEU J, WANG Y, et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol. 2015;17(12):1523-1535.
[10] HARVEY AJ, RATHJEN J GARDNER DK. Metaboloepigenetic regulation of pluripotent stem cells. Stem Cells Int. 2016;2016:1816525.
[11] MATSUI Y, ZSEBO K, HOGAN BL. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell. 1992;70(5):841-847.
[12] TURNPENNY L, SPALLUTO CM, PERRETT RM, et al. Evaluating human embryonic germ cells: concord and conflict as pluripotent stem cells. Stem Cells. 2006;24(2):212-220.
[13] SHAMBLOTT MJ, AXELMAN J, WANG S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A. 1998;95(23):13726-13731.
[14] LIU S, LIU H, PAN Y, et al. Human embryonic germ cells isolation from early stages of post-implantation embryos. Cell Tissue Res. 2004;318(3):525-531.
[15] PARK JH, KIM SJ, LEE JB, et al. Establishment of a human embryonic germ cell line and comparison with mouse and human embryonic stem cells. Mol Cells. 2004;17(2):309-315.
[16] TURNPENNY L, BRICKWOOD S, SPALLUTO CM, et al. Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells. 2003;21(5):598-609.
[17] SHAMBLOTT MJ, AXELMAN J, LITTLEFIELD JW, et al. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci U S A. 2001;98(1): 113-118.
[18] KARAGIANNIS P, NAKAUCHI A, YAMANAKA S. Bringing induced pluripotent stem cell technology to the bedside. JMA J. 2018;1(1):6-14.
[19] PARK IH, ZHAO R, WEST JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451(7175):141-146.
[20] YU J, VODYANIK MA, SMUGA-OTTO K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858): 1917-1920.
[21] MARION RM, STRATI K, LI H, et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell. 2009;4(2): 141-154.
[22] TAKAHASHI K, ICHISAKA T, YAMANAKA S. Identification of genes involved in tumor-like properties of embryonic stem cells. Methods Mol Biol. 2006; 329:449-458.
[23] GURDON JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol. 1962;10: 622-640.
[24] WILMUT I, SCHNIEKE AE, MCWHIR J, et al. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385(6619):810-813.
[25] LEE OH, LEE S, PARK M, et al. Generation of a B2M homozygous knockout human somatic cell nuclear transfer-derived embryonic stem cell line using the CRISPR/Cas9 system. Stem Cell Res. 2021;59:102643.
[26] JU JY, PARK CY, GUPTA MK, et al. Establishment of stem cell lines from nuclear transferred and parthenogenetically activated mouse oocytes for therapeutic cloning. Fertil Steril. 2008;89(5 Suppl):1314-1323.
[27] FUNDELE RH, NORRIS ML, BARTON SC, et al. Temporal and spatial selection against parthenogenetic cells during development of fetal chimeras. Development. 1990;108(1):203-211.
[28] GUAN K, NAYERNIA K, MAIER LS, et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature. 2006;440(7088):1199-1203.
[29] KANATSU-SHINOHARA M, INOUE K, LEE J, et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell. 2004;119(7):1001-1012.
[30] WANG H, JIANG M, BI H, et al. Conversion of female germline stem cells from neonatal and prepubertal mice into pluripotent stem cells. J Mol Cell Biol. 2014;6(2):164-171.
[31] GONG SP, LEE ST, LEE EJ, et al. Embryonic stem cell-like cells established by culture of adult ovarian cells in mice. Fertil Steril. 2010;93(8):2594-2601, 2601. e2591-e2599.
[32] GOLESTANEH N, KOKKINAKI M, PANT D, et al. Pluripotent stem cells derived from adult human testes. Stem Cells Dev. 2009;18(8):1115-1126.
[33] FUKUCHI Y, NAKAJIMA H, SUGIYAMA D, et al. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004; 22(5):649-658.
[34] LI Z, HU X, ZHONG JF. Mesenchymal stem cells: characteristics, function, and application. Stem Cells Int. 2019;2019:8106818.
[35] WAGERS AJ, WEISSMAN IL. Plasticity of adult stem cells. Cell. 2004;116(5): 639-648.
[36] BELTRAMI AP, CESSELLI D, BERGAMIN N, et al. Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood. 2007;110(9):3438-3446.
[37] KUCIA M, RECA R, CAMPBELL FR, et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia. 2006;20(5):857-869.
[38] PARTE S, BHARTIYA D, TELANG J, et al. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev. 2011;20(8): 1451-1464.
[39] ZUBA-SURMA EK, WU W, RATAJCZAK J, et al. Very small embryonic-like stem cells in adult tissues-potential implications for aging. Mech Ageing Dev. 2009;130(1-2):58-66.
[40] RATAJCZAK MZ, ZUBA-SURMA EK, SHIN DM, et al. Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Exp Gerontol. 2008;43(11):1009-1017.
[41] MIYANISHI M, MORI Y, SEITA J, et al. Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem Cell Reports. 2013;1(2):198-208.
[42] CHOI YJ, LIN CP, RISSO D, et al. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells. Science. 2017;355(6325):eaag1927.
[43] NAKAMURA T, OKAMOTO I, SASAKI K, et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature. 2016; 537(7618):57-62.
[44] GAO X, NOWAK-IMIALEK M, CHEN X, et al. Establishment of porcine and human expanded potential stem cells. Nat Cell Biol. 2019;21(6):687-699.
[45] ZHAO L, GAO X, ZHENG Y, et al. Establishment of bovine expanded potential stem cells. Proc Natl Acad Sci U S A. 2021. doi: 10.1073/pnas.2018505118.
[46] YANG J, RYAN DJ, LAN G, et al. In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells. Nat Protoc. 2019;14(2):350-378.
[47] SHEN H, YANG M, LI S, et al. Mouse totipotent stem cells captured and maintained through spliceosomal repression. Cell. 2021;184(11):2843-2859.e2820.
[48] HU Y, YANG Y, TAN P, et al. Induction of mouse totipotent stem cells by a defined chemical cocktail. Nature. 2023;617(7962):792-797.
[49] XU Y, ZHAO J, REN Y, et al. Derivation of totipotent-like stem cells with blastocyst-like structure forming potential. Cell Res. 2022;32(6):513-529.
[50] YANG M, YU H, YU X, et al. Chemical-induced chromatin remodeling reprograms mouse ESCs to totipotent-like stem cells. Cell Stem Cell. 2022; 29(3):400-418.e413.
[51] BOROVIAK T, STIRPARO GG, DIETMANN S, et al. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development. 2018;145(21):dev167833.
[52] VASSILIEV I, NOTTLE MB. Isolation and culture of porcine embryonic stem cells. Methods Mol Biol. 2013;1074:85-95.
[53] HONDA A, HIROSE M, OGURA A. Basic FGF and Activin/Nodal but not LIF signaling sustain undifferentiated status of rabbit embryonic stem cells. Exp Cell Res. 2009;315(12):2033-2042.
[54] CIBELLI JB, STICE SL, GOLUEKE PJ, et al. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat Biotechnol. 1998; 16(7):642-646.
[55] ZHU SX, SUN Z, ZHANG JP. Ovine (Ovis aries) blastula from an in vitro production system and isolation of primary embryonic stem cells. Zygote. 2007;15(1):35-41.
[56] LI P, TONG C, MEHRIAN-SHAI R, et al. Germline competent embryonic stem cells derived from rat blastocysts. Cell. 2008;135(7):1299-1310.
[57] MURRAY JT, CAMPBELL DG, MORRICE N, et al. Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3. Biochem J. 2004;384(Pt 3):477-488.
[58] BOGLIOTTI YS, WU J, VILARINO M, et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc Natl Acad Sci U S A. 2018;115(9):2090-2095.
[59] HAN X, XIANG J, LI C, et al. MLL1 combined with GSK3 and MAP2K inhibition improves the development of in vitro-fertilized embryos. Theriogenology. 2020; 146:58-70.
[60] WU X, SONG M, YANG X, et al. Establishment of bovine embryonic stem cells after knockdown of CDX2. Sci Rep. 2016;6:28343.
[61] VERMA OP, KUMAR R, NATH A, et al. In vivo differentiation potential of buffalo (Bubalus bubalis) embryonic stem cell. In Vitro Cell Dev Biol Anim. 2012;48(6):349-358.
[62] PILICHI S, ROCCA S, DATTENA M, et al. Sheep embryonic stem-like cells engrafted into sheep femoral condyle osteochondral defects: 4-year follow-up. BMC Vet Res. 2018;14(1):213.
[63] ZHAO Y, LIN J, WANG L, et al. Derivation and characterization of ovine embryonic stem-like cell lines in semi-defined medium without feeder cells. J Exp Zool A Ecol Genet Physiol. 2011;315(10):639-648.
[64] KUMAR DE A, MALAKAR D, AKSHEY YS, et al. Isolation and characterization of embryonic stem cell-like cells from in vitro produced goat (Capra hircus) embryos. Anim Biotechnol. 2011;22(4):181-196.
[65] BEHBOODI E, BONDAREVA A, BEGIN I, et al. Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos. Mol Reprod Dev. 2011;78(3):202-211.
[66] CHA HJ, YUN JI, HAN NR, et al. Generation of embryonic stem-like cells from in vivo-derived porcine blastocysts at a low concentration of basic fibroblast growth factor. Reprod Domest Anim. 2018;53(1):176-185.
[67] HOU DR, JIN Y, NIE XW, et al. Derivation of porcine embryonic stem-like cells from in vitro-produced blastocyst-stage embryos. Sci Rep. 2016;6:25838.
[68] ZHANG M, WANG C, JIANG H, et al. Derivation of novel naive-like porcine embryonic stem cells by a reprogramming factor-assisted strategy. FASEB J. 2019; 33(8):9350-9361.
[69] LI X, ZHOU SG, IMREH MP, et al. Horse embryonic stem cell lines from the proliferation of inner cell mass cells. Stem Cells Dev. 2006;15(4):523-531.
[70] TOBIAS IC, BROOKS CR, TEICHROEB JH, et al. Small-molecule induction of canine embryonic stem cells toward naïve pluripotency. Stem Cells Dev. 2016;25(16): 1208-1222.
[71] VAAGS AK, ROSIC-KABLAR S, GARTLEY CJ, et al. Derivation and characterization of canine embryonic stem cell lines with in vitro and in vivo differentiation potential. Stem Cells. 2009;27(2):329-340.
[72] WANG L, DUAN E, SUNG LY, et al. Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol Reprod. 2005; 73(1):149-155.
[73] GEORGE A, SHARMA R, SINGH KP, et al. Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilized and cloned blastocysts. Cell Reprogram. 2011;13(3):263-272.
[74] MUZAFFAR M, SELOKAR NL, SINGH KP, et al. Equivalency of buffalo (Bubalus bubalis) embryonic stem cells derived from fertilized, parthenogenetic, and hand-made cloned embryos. Cell Reprogram. 2012;14(3):267-279.
[75] SINGH KP, KAUSHIK R, GARG V, et al. Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation. Cell Reprogram. 2012;14(6):530-538.
[76] MUNOZ M, RODRIGUEZ A, DE FRUTOS C, et al. Conventional pluripotency markers are unspecific for bovine embryonic-derived cell-lines. Theriogenology. 2008;69(9):1159-1164.
[77] KUMAR D, ANAND T, VIJAYALAKSHMY K, et al. Transposon mediated reprogramming of buffalo fetal fibroblasts to induced pluripotent stem cells in feeder free culture conditions. Res Vet Sci. 2019;123:252-260.
[78] PILLAI VV, KEI TG, REDDY SE, et al. Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance. Anim Sci J. 2019;90(9):1149-1160.
[79] XIANG J, WANG H, ZHANG Y, et al. LCDM medium supports the derivation of bovine extended pluripotent stem cells with embryonic and extraembryonic potency in bovine-mouse chimeras from iPSCs and bovine fetal fibroblasts. FEBS J. 2021;288(14):4394-4411.
[80] SEBO J PARENT B. Human, nonhuman, and chimeric research: considering old issues with new research. Hastings Cent Rep. 2022;52 Suppl 2:S29-S33.
[81] YAMANAKA S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 2020;27(4):523-531.
[82] CIERVO Y, NING K, JUN X, et al. Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis. Mol Neurodegener. 2017;12(1):85.
[83] DIMOS JT, RODOLFA KT, NIAKAN KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321(5893):1218-1221.
[84] GURNEY ME, PU H, CHIU AY, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994;264(5166):1772-1775.
[85] ARNOLD ES, LING SC, HUELGA SC, et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci U S A. 2013;110(8):E736-E745.
[86] LUND RD, WANG S, KLIMANSKAYA I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 2006;8(3):189-199.
[87] KELAVA I, LANCASTER M A. Dishing out mini-brains: Current progress and future prospects in brain organoid research. Dev Biol. 2016;420(2):199-209.
[88] DE MASI C, SPITALIERI P, MURDOCCA M, et al. Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery. Hum Genomics. 2020;14(1):25.
[89] LI LB, BONINI NM. Roles of trinucleotide-repeat RNA in neurological disease and degeneration. Trends Neurosci. 2010;33(6):292-298.
[90] ADER M, TANAKA EM. Modeling human development in 3D culture. Curr Opin Cell Biol. 2014;31:23-28.
[91] SALMASI S, KALASKAR DM, YOON WW, et al. Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells. World J Stem Cells. 2015;7(2):266-280.
[92] STABLER CT, LECHT S, MONDRINOS MJ, et al. Revascularization of decellularized lung scaffolds: principles and progress. Am J Physiol Lung Cell Mol Physiol. 2015; 309(11):L1273-L1285.
[93] BAPTISTA LS, KRONEMBERGER GS, CÔRTES I, et al. Adult stem cells spheroids to optimize cell colonization in scaffolds for cartilage and bone tissue engineering. Int J Mol Sci. 2018;19(5):1285.
[94] PEPER J, KOWNATZKI-DANGER D, WENINGER G, et al. Caveolin3 stabilizes McT1-mediated lactate/proton transport in cardiomyocytes. Circ Res. 2021;128(6):e102-e120.
[95] CHEN H, CROSS AC, THAKKAR A, et al. Selective linkage of mitochondrial enzymes to intracellular calcium stores differs between human-induced pluripotent stem cells, neural stem cells, and neurons. J Neurochem. 2021; 156(6):867-879.
[96] SHARMA A, MCKEITHAN WL, SERRANO R, et al. Use of human induced pluripotent stem cell-derived cardiomyocytes to assess drug cardiotoxicity. Nature protocols. 2018;13(12):3018-3041.
[97] SALMAN MM, KITCHEN P, YOOL AJ, et al. Recent breakthroughs and future directions in drugging aquaporins. Trends Pharmacol Sci. 2022;43(1):30-42.
[98] MACHIRAJU P GREENWAY SC. Current methods for the maturation of induced pluripotent stem cell-derived cardiomyocytes. World J Stem Cells. 2019;11(1):33-43.
[99] KHATEB S, JHA S, BHARTI K, et al. Cell-based therapies for age-related macular degeneration. Adv Exp Med Biol. 2021;1256:265-293. |